期刊文献+

3D打印钛合金毛细芯流动和传热的数值模拟

Numerical Simulation of Flow and Heat Transfer of 3D-printed Titanium Alloy Wick
下载PDF
导出
摘要 毛细芯作为环路热管中的关键部件,其流动和传热特性决定了整个环路热管的性能。作为一种新型的毛细结构,3D打印毛细芯的研究尚在起步阶段。基于VOF、LEE等模型,对3D打印钛合金毛细芯的流动和传热特性进行了数值模拟,在1.95 W和2.96 W的热负荷下,模拟结果与实验结果拟合良好。对毛细芯湿工况的二维模拟结果显示,毛细芯的温度不仅取决于热负荷,还取决于毛细芯表面的两种传热机制,即毛细蒸发机制和热传导机制。 As a key component in the loop heat pipe, the flow and heat transfer characteristics of the wick determine the performance of the entire loop heat pipe. At present, the common homogeneous wicks in the loop heat pipe include sin-tered powder wicks, groove, ceramic wicks, etc. With the development of 3D-printed technology, 3D-printed wicks have begun to be applied to the loop heat pipe. As a new type of wick structure, 3D-printed wick has been barely investigated so far. In this paper, the flow and heat transfer characteristics of 3D-printed titanium alloy wick was numerically simulated by means of VOF method and LEE model. The simulation results agreed well with the experiment results in heat flux of 1.95W and 2.96 W. The 2D simulation of the wick showed the temperature of the wick did not depend solely on the heat flux, but on the two heat transfer mechanisms occurring on the surface of the wick, namely the capillary evaporation mechanism and the heat conduction mechanism.
作者 陈曦 林毅 孙琦 谢荣建 CHEN Xi;LIN Yi;SUN Qi;XIE Rongjian(School of Energy and Power Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;Shanghai Institute of Technical Physics of the Chinese Academy of Sciences,Shanghai 200083,China)
出处 《真空与低温》 2019年第2期94-98,共5页 Vacuum and Cryogenics
基金 国家自然科学基金项目(50906054)
关键词 环路热管 钛合金毛细芯 VOF 模型 数值模拟 loop heat pipe titanium alloy wick VOF model numerical simulation
  • 相关文献

参考文献3

二级参考文献43

  • 1薛强,纪献兵,Abanda Aime Marthial,徐进良.泡沫金属作为毛细层的风冷型平板环路热管传热性能研究[J].中国电机工程学报,2012,32(32):58-63. 被引量:5
  • 2Vasiliev L, Lossouarn D, Romestant C, Alexandre A, Bertin Y, Piatsiushyk Y, Romanenkov V. Loop heat pipe for cooling of high-power electronic components [J]. International Journal of Heat and Mass Transfer, 2009, 52 (1/2): 301-308.
  • 3Wang Dongdong, Liu Zhichun, Shen Jun, Jiang Chi, Chen Binbin, Yang Jinguo, Tu Zhengkai, Liu Wei. Experimental study of the loop heat pipe with a flat disk-shaped evaporator [J]. Experimental Thermal and Fluid Science, 2014, 57: 157-164.
  • 4Riehl R R, Siqueira T C P A. Heat transport capability and compensation chamber influence in loop heat pipes performance [J]. Applied Thermal Engineering, 2006, 26 (11/12): 1158-1168.
  • 5Santos P H D, Bazzo E, Oliveira A A M. Thermal performance and capillary limit of a ceramic wick applied to LHP and CPL [J]. Applied Thermal Engineering, 2012, 41: 92-103.
  • 6Celata Gian Piero, Cumo Maurizio, Furrer Massimo. Experimental tests of a stainless steel loop heat pipe with flat evaporator [J]. Experimental Thermal and Fluid Science, 2010, 34 (7): 866-878.
  • 7Tang Yong, Zhou Rui, Lu Longsheng, Xie Zichun. Anti-gravity loop-shaped heat pipe with graded pore-size wick [J]. Applied Thermal Engineering, 2012, 36: 78-86.
  • 8Hwang G S, Kaviany M, Anderson W G, Zuo J. Modulated wick heat pipe [J]. International Journal of Heat and Mass Transfer, 2007, 50 (7/8): 1420-1434.
  • 9Yeh C C, Chen C N, Chen Y M. Heat transfer analysis of a loop heat pipe with biporous wicks [J]. International Journal of Heat and Mass Transfer, 2009, 52: 4426-4434.
  • 10Semenic Tadej, Catton Ivan. Experimental study of biporous wicks for high heat flux applications [J]. International Journal of Heat and Mass Transfer, 2009, 52: 5113-5121.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部