期刊文献+

柔性圆柱形微管道内的电动流动及传热研究 被引量:3

Electrokinetic Flow and Heat Transfer in Soft Microtubes
下载PDF
导出
摘要 研究了在纯压力驱动下,流体通过壁面带有某种电荷的聚电解质层(PEL)的微管道,即柔性微管道的电动流动和热传输特性.基于先前得到的电势和速度的解析解以及流向势的数值解,在热充分发展的情况下,假设壁面热流恒定,利用有限差分法求解了包括黏性耗散和Joule(焦耳)热影响下的能量方程,获得了无量纲温度数值解.通过数值计算,给出了相关的无量纲参数对速度、温度以及Nusselt(努赛尔)数的影响.研究表明,当其他参数固定时,无量纲速度和温度随着无量纲聚电解质层厚度d的增大而减小,随着聚电解质层中等效双电层厚度与双电层厚度之比K_λ的增大而增大;Nusselt数随着Joule热系数S的增大而减小,随无量纲聚电解质层厚度d的增大而减小,随着K_λ的增大而增大. The electrokinetic flow and heat transfer characteristics of fluid in soft microtubes, of which the walls were covered by polyelectrolyte materials as the fixed charge layer, were studied based on previously obtained analytical solutions of electrical potentials and velocities, and numerical solutions of streaming potentials. Under the assumption of a constant wall heat flow, the energy equations including the effects of viscous dissipation and Joule heat were solved with the finite difference method and numerical solutions of the dimensionless temperature were obtained. Numerical calculations also gave the influences of related dimensionless parameters on the velocity, the temperature and the Nusselt number. The study shows that, when other parameters are fixed, the dimensionless velocity and temperature decrease with thickness d of the polyelectrolyte layer but increase with equivalent electric double layer to electric double layer thickness ratio Kλ;the Nusselt number decreases with Joule heat coefficient S and polyelectrolyte layer thickness d,but increases with Kλ.
作者 许丽娜 菅永军 XU Lina;JIAN Yongjun(School of Mathematical Sciences, Inner Mongolia University,Hohhot 010021, P.R.China)
出处 《应用数学和力学》 CSCD 北大核心 2019年第4期408-418,共11页 Applied Mathematics and Mechanics
基金 国家自然科学基金(11772162 11472140) 内蒙古自治区自然基金(2016MS0106) 内蒙古自治区"草原英才"工程(12000-12102013)~~
关键词 柔性圆柱形微管道 热传输 流向势 NUSSELT数 soft microtube heat transfer streaming potential Nusselt number
  • 相关文献

参考文献2

二级参考文献51

  • 1长龙,菅永军2012物理学报61124702.
  • 2Tian F, Li B, Kwok D Y. Tradeoff between mixing and transport for electroosmotic flow in heterogeneous microchannels with nonuniform surface potentials[J]. Langmuir,2005,21(3): 1126-1131.
  • 3Dutta P, Beskok A. Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: finite Debye layer effects[J]. Analytical Chemistry,2001,73(9): 1979-1986.
  • 4Hessel V, Lwe H, Schnfeld F. Micromixers—a review on passive and active mixing principles[J]. Chemical Engineering Science,2005,60(8/9): 2479-2501.
  • 5Capretto L, CHENG Wei, Hill M, ZHANG Xun-li. Micromixing within microfluidic devices[C]//LIN Bing-cheng, ed. Microfluidics: Topics in Current Chemistry,304. Berlin, Heidelberg: Springer-Verlag, 2011: 27-68.
  • 6Jeon W, Shin C B. Design and simulation of passive mixing in microfluidic systems with geometric variations[J]. Chemical Engineering Journal,2009,152(2/3): 575-582.
  • 7ZHANG Fang, Daghighi Y, LI Dong-qing. Control of flow rate and concentration in microchannel branches by induced-charge electrokinetic flow[J]. Journal of Colloid and Interface Science,2011,364(2): 588-593.
  • 8Nayak A K. Analysis of mixing for electroosmotic flow in micro/nano channels with heterogeneous surface potential[J]. International Journal of Heat and Mass Transfer,2014,75: 135-144.
  • 9WANG Jin-ku, WANG Mo-ran, LI Zhi-xin. Lattice Boltzmann simulations of mixing enhancement by the electro-osmotic flow in microchannels[J]. Modern Physics Letters B,2005,19(28/29): 1515-1518.
  • 10WANG Jin-ku, WANG Mo-ran, LI Zhi-xin. Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels[J]. Journal of Colloid and Interface Science,2006,296(2): 729-736.

共引文献7

同被引文献11

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部