摘要
利用李雅普诺夫函数和拉萨尔不变性原理,给出了一种证明地方病平衡点的全局稳定性的代数方法.该方法是基于经典李雅普诺夫函数■,研究如何去选择合适的系数a_i,使得经典李雅普诺夫函数的导数是负定的或半负定的.作为一个应用,研究了具有复发的SIRI传染病模型的地方病平衡点的全局稳定性.
By means of the Lyapunov function and the LaSalle’s invariance principle,an algebraic approach to proving the global stability of endemic equilibrium point was presented in this paper.The method was based on the classical Lyapunov function ∑i=1^nai(xi-xi^*-xi^* lnxi/xi^*) and was discussed how to select the appropriate coefficient ai ,such that the derivative of the classical Lyapunov function was negative definite or semidefinite.As an application,the global stability of endemic equilibrium point of SIRI epidemic model with relapse was studied.
作者
高建忠
李志民
GAO Jian-zhong;LI Zhi-min(School of Science,Chang'an University,Xi'an 710064,China)
出处
《哈尔滨商业大学学报(自然科学版)》
CAS
2019年第2期234-236,共3页
Journal of Harbin University of Commerce:Natural Sciences Edition
基金
国家自然科学基金(11701041)
陕西省自然科学基础研究计划(2018JM1011
2017JQ1014)