期刊文献+

利用代数方法证明地方病平衡点的全局稳定性 被引量:1

Using algebraic method to prove global stability of endemic equilibrium point
下载PDF
导出
摘要 利用李雅普诺夫函数和拉萨尔不变性原理,给出了一种证明地方病平衡点的全局稳定性的代数方法.该方法是基于经典李雅普诺夫函数■,研究如何去选择合适的系数a_i,使得经典李雅普诺夫函数的导数是负定的或半负定的.作为一个应用,研究了具有复发的SIRI传染病模型的地方病平衡点的全局稳定性. By means of the Lyapunov function and the LaSalle’s invariance principle,an algebraic approach to proving the global stability of endemic equilibrium point was presented in this paper.The method was based on the classical Lyapunov function ∑i=1^nai(xi-xi^*-xi^* lnxi/xi^*) and was discussed how to select the appropriate coefficient ai ,such that the derivative of the classical Lyapunov function was negative definite or semidefinite.As an application,the global stability of endemic equilibrium point of SIRI epidemic model with relapse was studied.
作者 高建忠 李志民 GAO Jian-zhong;LI Zhi-min(School of Science,Chang'an University,Xi'an 710064,China)
机构地区 长安大学理学院
出处 《哈尔滨商业大学学报(自然科学版)》 CAS 2019年第2期234-236,共3页 Journal of Harbin University of Commerce:Natural Sciences Edition
基金 国家自然科学基金(11701041) 陕西省自然科学基础研究计划(2018JM1011 2017JQ1014)
关键词 李雅普诺夫函数 拉萨尔不变性原理 代数方法 复发的SIRI模型 全局稳定性 Lyapunov function LaSalle’s invariance principle algebraic approach SIRI model with relapse global stability
  • 相关文献

参考文献4

二级参考文献36

  • 1徐建国.中国新发传染病现状和防制[J].中国人兽共患病学报,2004,21(z1):1-8. 被引量:7
  • 2向浩,雷正龙,聂绍发.新发传染病应对策略与措施[J].疾病控制杂志,2006,10(2):183-185. 被引量:38
  • 3http://www.who.int/zoonoses/emerging_zoonoses/en.
  • 4Zinsstag J,Schelling E,Wyss K,et al.Potential of cooperationbetween human and animal health to strengthen health systems[J].Lancet,2005,366(9503):2142-2145.
  • 5Budke CM.Global socioeconomic impact of cystic echinococcosis[J].Emerg Infect Dis,2006,12(2):296-303.
  • 6Tsiodras S,Kelesidis T,Kelesidis I,et al.Human infections associated with wild birds[J].J Infect,2008,56(2):83-98.
  • 7Real LA,Biek R.Infectious disease modeling and the dynamicsof transmission[J].Curr Top Microbiol Immunol,2007,315:33-49.
  • 8Moghadas S M. Two core group models for sexual transmission of disease[J]. Ecological Modelling, 2002 ,148 (1) : 15-26.
  • 9Hyman J M, Li J. An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations [J]. Math Biosci, 2000 , 167(1): 65-86.
  • 10Ma Z, Liu J P, Li J. Stability analysis for differential infectivity epidemic models [J]. Nonlinear Analysis:Real World Applications, 2003 , 4(5): 841-856.

共引文献79

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部