期刊文献+

Solvent polarity-induced photoluminescence enhancement (SPIPE): A method enables several-fold increase in quantum yield of silicon nanoparticles 被引量:1

原文传递
导出
摘要 Fluorescent silicon nanoparticles (SiNPs) bring exciting opportunities for long-awaited silicon-based optical application, while intrinsic indirect band gap of silicon severely limits photoluminescent quantum yield (PLQY) of SiNPs. To address this critical issue, we herein demonstrate a facile and general method, Le., solvent polarity-induced photoluminescence enhancement (SPIPE)1 yielding several-fold increase in quantum yield (QY) of SiNPs. Typically, different kinds of 4-substituented-1,8-naphthalic anhydride molecules, Le., 4-Br-1,8-naphthalic anhydride (BNA)1 4-triphenylamino-1,8-naphthalic anhydride (TPNA)1 and 4-dimethylamino-1,8-naphthalic anhydride (DMNA)1 are rationally designed and synthesized, which serve as surface ligands for the production of BNA-, TPNA-, and DMNA-capped small-sized (diameter:- 3.8-5.8 nm) SiNPs with QY of^8%,~15%,~16%, respectively. Of particular significance, QY of the resultant SiNPs could be greatly enhanced from^10% to^50% through the SPlPE strategy. Taken together with the theoretical calculation and the results of time-correlated single photon counting, we reveal that actived excited-state charge transfer interactions between surface-covered ligand and silicon oxide coating would be responsible for the observed QY enhancement. Moreover, other five kinds of solvents (i.e., methanol, isopropanol, dimethyl sulfoxide, N,N-dimethylformamide, and acetonitrile) are further employed for the SiNPs treatment, and similar improvement of QY values are observed, convincingly demonstrating the universal evidence of SPIPE of the SiNPs.
出处 《Nano Research》 SCIE EI CAS CSCD 2019年第2期315-322,共8页 纳米研究(英文版)
基金 the National Basic Research Program of China (973 Program)(Nos. 2013CB934400 and 2012CB932400) the National Natural Science Foundation of China (NSFC)(Nos. 21672157, 21542015, 21372174, 61361160412, and 31400860) the Ph.D. Programs Foundation of Ministry of Education of China (No. 20133201130004) the Project of Scientific and Technologic Infrastructure of Suzhou (No. SZS201708) Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC).
  • 相关文献

参考文献4

二级参考文献104

  • 1Patil, S. D.; Rhodes, D. G.; Burgess, D. J. DNA-based therapeutics and DNA delivery systems: A comprehensive review. AAPSL 2005, 7, E61-E77.
  • 2Helleday, T.; Petermann, E.; Lundin, C.; Hodgson, B.; Sharma, R. A. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer 2008, 8, 193-204.
  • 3Blechinger, J.; Bauer, A. T.; Torrano, A. A.; Gorzelanny, C., Br/iuchle, C.; Schneider, S. W. Uptake kinetics and nano- toxicity of silica nanoparticles are cell type dependent. Small 2013, 9, 3970-3980.
  • 4Pendergrast, P. S.; Marsh, H. N.; Grate, D.; Healy, J. M.; Stanton, M. Nucleic acid aptamers for target validation and therapeutic applications. J. Biomol. Tech. 20115, 16, 224-234.
  • 5Niidome, T., Huang, L. Gene therapy progress and prospects: Nonviral vectors. Gene Ther. 2002, 9, 1647-1652.
  • 6Herweijer, H.; Wolff, J. A. Progress and prospects: Naked DNA gene transfer and therapy. Gene Ther. 2003, 10, 453-458.
  • 7E1-Aneed, A. An overview of current delivery systems in cancer gene therapy. J. Control Release 2004, 94, 1-14.
  • 8Wong, S. Y.; Pelet, J. M.; Putnam, D. Polymer systems for gene delivery--Past, present, and future. Prog. Polym. Sci. 2007, 32, 799-837.
  • 9Thomas, C. E.; Ehrhardt, A.; Kay, M. A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 2003, 4, 346-358.
  • 10Marshall, E. Gene therapy death prompts review of adenovirus vector. Science 1999, 286, 2244-2245.

共引文献9

同被引文献4

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部