期刊文献+

All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring 被引量:6

原文传递
导出
摘要 The booming of wearable electronics has nourished the progress on developing multifunctional energy storage systems with versatile flexibility, which enable the continuous and steady power supply even under various deformed states. In this sense, the synergy of flexible energy and electronic devices to construct integrative wearable microsystems is meaningful but remains quite challenging by far. Herein, we devise an innovative supercapacitor/sensor integrative wearable device that is based upon our designed vanadium nitride-graphene (VN-G) architectures. Flexible quasi-solid-state VN-G supercapacitor with ultralight and binder-free features deliver a specific capacitance of^53 F·g^-1 with good cycle stability. On the other hand, VN-G derived pressure sensors fabricated throughout a spray-printing process also manifest favorably high sensitivity (40 kPa^-1 at the range of 2-10 kPa), fast response time (~130 ms), perfect skin conformability, and outstanding stability under static and dynamic pressure conditions. In tum, their complementary unity into a self-powered wearable sensor enables the precise detecti on of physiological motions ranging from pulse rate to phonetic recognition, holding promise for in-practical health monitoring applications.
出处 《Nano Research》 SCIE EI CAS CSCD 2019年第2期331-338,共8页 纳米研究(英文版)
基金 the National Key Research and Development Program of China (No. 2016YFA0200103) the National Natural Science Foundation of China (Nos. 51702225, 21473119, 51675275, 51520105003, and 51432002) Jiangsu Youth Science Foundation (BK20170336).
  • 相关文献

同被引文献36

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部