期刊文献+

具有治疗、完全Logistic增长和免疫应答延迟的HIV感染模型分析

Analysis of HIV infection model with treatment, complete Logistic growth and delayed immune response
下载PDF
导出
摘要 建立具有治疗、完全Logistic增长和免疫应答延迟的HIV感染模型,通过对一些关键参数的分析,证明:如果逆转录酶抑制剂和蛋白酶抑制剂的作用效果满足一定的条件,则在可行域内,无感染平衡点是唯一的稳定状态;如果治疗的效果不足够,则平衡点成为不稳定的,且HIV感染存在。在一定条件下,时滞可以影响免疫耗尽平衡点和感染平衡点的稳定性。数值模拟验证了所得结论。 The model of HIV infection with treatment, complete Logistic growth and delayed immune response is established. Through the analysis of some key parameters, it is shown that if the effect of reverse transcriptase inhibitors and protease inhibitors satisfies certain conditions, then in the feasible region, no infection equilibrium point is the only stable state;if the effect of treatment is not sufficient, the equilibrium point becomes unstable, and HIV infection is present, the time delay can affect the stability of the immune depletion equilibrium point and the infection equilibrium point under certain conditions. The conclusions are verified by digital simulation.
作者 郝建玲 王辉 胡志兴 廖福成 HAO Jianling;WANG Hui;HU Zhixing;LIAO Fucheng(School of Mathematics and Physics, Beijing University of Science and Technology, Beijing 100083 , China)
出处 《黑龙江大学自然科学学报》 CAS 2019年第1期19-26,共8页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(61174209 11471034)
关键词 HIV感染 时滞 稳定性 HOPF分支 免疫反应 HIV infection time delay stability Hopf bifurcation immune response
  • 相关文献

参考文献1

二级参考文献15

  • 1闫萍,吴昭英.具潜伏期的无免疫型传染病动力学的微分模型[J].生物数学学报,2006,21(1):47-56. 被引量:22
  • 2李大潜.非终身免疫型传染病动力学的偏微模型[J].生物数学学报,1986,(1):29-36.
  • 3马知恩,周义仓.常微分方程定性与稳定性方法[M].北京:科学出版社,2007.
  • 4Perelson A S, Nelson P W. Mathematical analysis of HIV-1 Dynamics in vivo[J]. SIAM Review, 1999, 41(1):3-44.
  • 5Levy.艾滋病病毒与艾滋病的发病机制[M].北京:科学出版社,2000.
  • 6Kaifa Wang, Wendi Wang, Haiyan Pang, et al. Complex dynamic behavior in a viral model with delayed immune response[J]. Physica, 2007, D(226):197-208.
  • 7Martin Nomak A, Robert M. May, virus dynamics[M]. New York: OxfordUniversity Press, 2000.
  • 8Buric N, Mudrinic M, Vasovi N. Time delay in a basic model of the immune response[J]. Chaos, Solitons and Fractals, 2001, 12, 483-489.
  • 9Sandor Kovacs. Dynamics of an HIV/AIDS model-The effect of time delay[J]. Applied Mathematics and Computation, 2007, 188, 1597-1609.
  • 10Patrick Nelson W, Alan S. Perelson,Mathematical Analysis of delay differential equation model of HIV-1 infection[J]. Mathematical Biosciences, 2002, 179, 73-94.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部