摘要
点群的自动选取是制图综合的重要内容。在Voronoi图点群选取的基础上,提出一种顾及多特征约束的Voronoi图点群选取方法。该方法顾及了描述点群要素重要性的空间分布特征、拓扑和密度特征、专题属性特征以及与其他要素的关联特征,构建了基于综合特征重要性的度量模型,并作为约束条件应用于Voronoi图点群要素的选取。实验结果表明,该方法不仅可以综合考虑点群要素的多种重要性特征,而且能够较好地保持点群综合前后空间特征的一致性,符合传统制图综合规律,具有一定的普适性。
The automatic selection of point cluster is an important part of cartographic generalization. Based on the Voronoi diagram, a selection method considering multi-feature constraints is proposed in this paper that can describe the importance of point cluster, which includes spatial distribution characteristics, topological and density characteristics, thematic attribute characteristics and association characteristics with other features. A measurement model based on the importance of the integrated features is constructed and applied as constraints to the selection method. Experimental results show that the proposed method can not only comprehensively consider the multi-importance features of point cluster, but also maintain the consistency of spatial features before and after generalization, which conforms to the traditional law of cartographic generalization and has certain universality.
作者
马京振
徐立
朱蕊
孙士杰
刘然
MA Jingzhen;XU Li;ZHU Rui;SUN Shijie;LIU Ran(Information Engineering University, Zhengzhou 450001, China;Academy of Military Science, Beijing 100091, China)
出处
《测绘科学技术学报》
CSCD
北大核心
2018年第5期540-544,共5页
Journal of Geomatics Science and Technology
基金
国家自然科学基金项目(41571399)
关键词
VORONOI图
点群选取
多特征约束
重要性
度量模型
Voronoi diagram
point cluster selection
multi-feature constraints
importance
measurement model