期刊文献+

超声速喷管起动过程激波结构演化特征 被引量:7

Research on evolution of starting shock in a supersonic nozzle
下载PDF
导出
摘要 通过改变进出口压比,对马赫数2.7的二维对称拉瓦尔喷管流动进行了试验研究,给出了超声速喷管起动过程中的激波结构演化特征。在试验过程中,固定喷管喉道出口面积比,改变喷管上下游压比,使喷管起动激波从喉道发展到喷管出口处,逐渐过渡到设计工况。在起动激波向下游发展的过程中,喷管内流动经历了教科书上给出的理论过程:喉道正激波、扩张段内正激波、喷管出口马赫反射、喷管出口规则反射、设计工况等;但由于附面层的存在,每一个过程与无粘情况下的激波示意图都有所不同。比如,试验中捕捉到的激波串在向下游的移动过程中,出现的由λ型激波向Х型激波的转变,以及激波串非对称现象的出现等。基于纹影和剪切敏感液晶摩阻显示技术获得了起动激波串的首道激波的三维特征。 The starting process of the flow in a Mach 2.7 supersonic nozzle is experimentally investigated. The starting shock moves from the throat to the exit of the nozzle when the incoming total pressure is gradually increased. The flow in the nozzle undergoes the process of normal shock at the throat, normal shock at the expansion duct, oblique shock at the expansion duct, Mach reflection at the exit of the nozzle, regular reflection at the exit of the nozzle and the design conditions. The transformation from the Mach reflection to the regular reflection is observed based on the experimental result of schlieren and PIV. The three-dimensional flow structure of the leading shocks of the shock train has been rebuilt by using the schlieren image system and the shear-sensitive liquid crystal technology.
作者 王成鹏 杨锦富 程川 王文硕 徐培 杨馨 焦运 程克明 Wang Chengpeng;Yang Jinfu;Cheng Chuan;Wang Wenshuo;Xu Pei;Yang Xin;Jiao Yun;Cheng Keming(College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
出处 《实验流体力学》 EI CAS CSCD 北大核心 2019年第2期11-16,共6页 Journal of Experiments in Fluid Mechanics
基金 国家自然科学基金项目(51776096 51476076) 空气动力学国家重点实验室研究基金项目(SKLA20180304)
关键词 超声速喷管 起动激波 激波附面层干扰 激波串 激波反射 supersonic nozzle starting shock shock/boundary layer interaction shock train shock reflection
  • 相关文献

参考文献3

二级参考文献49

  • 1D.Om,M.E,Childs.An Experimental Investigation of Multiple Shock Wave/Turbulent Boundary Layer Interactions in a Circular Duct[R].AIAA paper 83-1744,1983.
  • 2Chakravarthy S L. High resolution formulations for the NS equations[R]. N89-17824,1989.
  • 3Seokkwan Yoon. Antony Jameson. Lower-Upper Symmetric-Gauss-Seidel Method for the Euler and Navier-Stokes equations[J]. AIAA JOURNAL,26(9).
  • 4Neumann E P.Lustwerk F.Supersonic diffusers for wind tunnls[J].J Appl Mech,1949,16(2):195-202.
  • 5Neumann E P.Lustwerk F.High Efficiency Supersonic Diffusers[J],J Aeronaut Sci,1951,18(6):369-374.
  • 6D.Om,M.E,Childs.Multiple Transonic shock-wave /turbulent boundary-layer interaction in a Circular duct[J].AIAA Journal,1985,23(5):707-714.
  • 7Carroll B F. Lopez-Fernandez P A. Dutton J C. Computations and experiments for a mutiple normal shock/boundary-layer interaction[J]. J Propulsion Power 1993;9(3):405-11.
  • 8Kazuyasu M, Yoshiaki M, Heuy-Dong K. Shock train and pseudo-shock phenomena in internal in internal gas flows[J]. Progress in Aerospace Sciences,1999,35:33-100.
  • 9丁猛.超声速/高超声速进气道―隔离段流场的数值模拟[D].长沙:国防科技大学,2001.
  • 10Boyanapalli R, Vanukuri RSR, Gogineni P, Nookala J, Yarla- gadda GK, Gada V. Analysis of composite de-Laval nozzle suitable for rocket applications. Int J Innovative Technol Exploring Eng 2013;2(5):336-44.

共引文献26

同被引文献58

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部