期刊文献+

一类随机SEIQR传染病模型的动力学行为分析 被引量:8

Dynamics analysis of a stochastic SEIQR epidemic model
下载PDF
导出
摘要 考虑疾病传播过程中随机因素的影响,研究一类具有潜伏期和隔离仓室的SIR传染病模型(SEIQR)。通过构造Lyapunov函数并利用It?公式,证明了随机SEIQR传染病模型存在唯一的全局正解,得到其关于相应的确定性模型的无病平衡点和地方病平衡点渐近稳定的充分性条件。 Taking account of the effects of stochastic noise in disease transmission,the dynamics of SIR epidemic model with latent and quarantine(SEIQR)was studied.By constructing a Lyapunov function and using It formula,it is proved that this stochastic SEIQR epidemic model has a unique global positive solution,and obtain the sufficient conditions for the asymptotic stability of the solution on the disease-free equilibrium and endemic equilibrium of the corresponding deterministic model.
作者 李雪 胡良剑 LI Xue;HU Liangjian(College of Science,Donghua University,Shanghai 201620,China)
机构地区 东华大学理学院
出处 《纺织高校基础科学学报》 CAS 2019年第1期37-43,共7页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金面上项目(11471071)
关键词 随机传染病模型 ITO公式 LYAPUNOV函数 平衡点 渐近稳定 stochastic epidemic model It formula Lyapunov function equilibrium asymptotic stability
  • 相关文献

参考文献6

二级参考文献37

  • 1方能文.一类弱对角占优矩阵特征值的性质及其应用[J].安徽大学学报(自然科学版),1995,19(1):18-22. 被引量:2
  • 2孙树林,原存德.捕食者具有流行病的捕食-被捕食(SI)模型的分析[J].生物数学学报,2006,21(1):97-104. 被引量:51
  • 3MUKHERJEE D.Stability analysis of a stochastic model for prey-predator system with disease in the prey[J].Nonlin-ear Analysis Modelling and Control,2003,8(2):83-92.
  • 4CHEN Xiao Y.Analysis of a there species eco-epidemiological model[J].Math Anal Appl,2001,258:733-754.
  • 5CHEN Xiao Y.Modeling and analysis of a predator-prey model with disease in the prey[J].Math Biosci,2001,171:59-82.
  • 6CHATTOPADHYAY J,BAIRAGI N.Pelicans at risk in Salton sea-an eco-epidemological study[J].Eco Model,2001,136:103-112.
  • 7CHATTOPADHYAY J,BAIRAGI N.Pelicans at risk in Salton sea-an eco-epidemological model-Ⅱ[J].Eco Model,2003,167:199-211.
  • 8Li M Y, Muldowney J S. Global stability for the SEIR model in epidemiology[J]. Math Biosci, 1995, 125(2):155-164.
  • 9Zhang J, Ma Z E. Global dynamics of an SEIR epidemic model with saturating contact rate[J]. Math Biosci,2003,185 (1) : 15-32.
  • 10Fan M, Li M Y, Wang K. Global stability of an SEIS epidemic model with recruitment and a varying total population size[J]. Math Biosci, 2001,170 (2) : 199-208.

共引文献32

同被引文献37

引证文献8

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部