期刊文献+

基于深度学习的网约车供需缺口短时预测研究 被引量:9

Short-term Forecasting of Supply-demand Gap under Online Car-hailing Services Based on Deep Learning
下载PDF
导出
摘要 城市不同区域网约车供需缺口预测可为车辆调度策略提供支持,从而提高车辆运行效率和乘客服务水平.为实现网约车供需缺口短时预测,提出一种基于时空数据挖掘的深度学习预测模型(Spatio-Temporal Deep Learning Model, S-TDL).该模型由时空变量模型、空间属性变量模型和环境变量模型3个子模型融合而成,可捕捉时空关联性、区域差异性和环境变化对供需缺口的影响.同时,提出特征聚类—最大信息系数两阶段特征选择方法,筛选与供需缺口相关性强的特征变量,提高训练效率,减少过拟合.滴滴出行实例分析证明,特征选择后的STDL模型预测精度显著优于BP神经网络、长短期记忆网络和卷积神经网络. The results of supply-demand gap prediction for online car-hailing services in different areas can provide support for online car-hailing scheduling system, thereby improving efficiency and service levels. In order to realize the short-term forecast of supply-demand gap for online car-hailing services, this paper proposes a novel spatio- temporal deep learning model (S- TDL). The model is composed of three sub- models: spatiotemporal variable model, spatial attribute variable model and environment variable model. It can capture the impact of spatio-temporal correlation, regional difference and environmental change on supply-demand gap. Moreover, a feature selection method named feature clustering-maximum information coefficient two-stage feature selection is proposed to screen out the important features which are strongly correlated with the supply- demand gap, improve training efficiency. The experimental results show that the S-TDL model after feature selection achieves the better performance than the existing methods.
作者 谷远利 李萌 芮小平 陆文琦 王硕 GU Yuan-li;LI Meng;RUI Xiao-ping;LU Wen-qi;WANG Shuo(Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport,Ministry of Transport,Beijing Jiaotong University, Beijing 100044, China;School of Earth Sciences andEngineering, Hohai University, Nanjing 211000, China)
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2019年第2期223-230,共8页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金(41771478)~~
关键词 城市交通 供需缺口预测 深度学习 网约车 时空关联性 urban traffic supply-demand gap forecasting deep learning online car-hailing spatio-temporal correlation
  • 相关文献

参考文献1

二级参考文献1

共引文献19

同被引文献52

引证文献9

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部