摘要
城市不同区域网约车供需缺口预测可为车辆调度策略提供支持,从而提高车辆运行效率和乘客服务水平.为实现网约车供需缺口短时预测,提出一种基于时空数据挖掘的深度学习预测模型(Spatio-Temporal Deep Learning Model, S-TDL).该模型由时空变量模型、空间属性变量模型和环境变量模型3个子模型融合而成,可捕捉时空关联性、区域差异性和环境变化对供需缺口的影响.同时,提出特征聚类—最大信息系数两阶段特征选择方法,筛选与供需缺口相关性强的特征变量,提高训练效率,减少过拟合.滴滴出行实例分析证明,特征选择后的STDL模型预测精度显著优于BP神经网络、长短期记忆网络和卷积神经网络.
The results of supply-demand gap prediction for online car-hailing services in different areas can provide support for online car-hailing scheduling system, thereby improving efficiency and service levels. In order to realize the short-term forecast of supply-demand gap for online car-hailing services, this paper proposes a novel spatio- temporal deep learning model (S- TDL). The model is composed of three sub- models: spatiotemporal variable model, spatial attribute variable model and environment variable model. It can capture the impact of spatio-temporal correlation, regional difference and environmental change on supply-demand gap. Moreover, a feature selection method named feature clustering-maximum information coefficient two-stage feature selection is proposed to screen out the important features which are strongly correlated with the supply- demand gap, improve training efficiency. The experimental results show that the S-TDL model after feature selection achieves the better performance than the existing methods.
作者
谷远利
李萌
芮小平
陆文琦
王硕
GU Yuan-li;LI Meng;RUI Xiao-ping;LU Wen-qi;WANG Shuo(Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport,Ministry of Transport,Beijing Jiaotong University, Beijing 100044, China;School of Earth Sciences andEngineering, Hohai University, Nanjing 211000, China)
出处
《交通运输系统工程与信息》
EI
CSCD
北大核心
2019年第2期223-230,共8页
Journal of Transportation Systems Engineering and Information Technology
基金
国家自然科学基金(41771478)~~
关键词
城市交通
供需缺口预测
深度学习
网约车
时空关联性
urban traffic
supply-demand gap forecasting
deep learning
online car-hailing
spatio-temporal correlation