摘要
针对朴素贝叶斯分类器存在对非均衡样本分类时,易将少数类样本分到多数类的问题,利用感受性曲线的性质和深度特征加权的思想,提出一种面向非均衡数据类的朴素贝叶斯加权算法(DA-WNB)。为了验证该算法对不平衡数据分类的有效性,实验结果以AUC、真正类率、整体精度为指标,仿真结果表明,该算法能提高少数类分类准确率(最高达60%),且能保持较高的整体精度。
Naive Bayesian classifier is easy to divide minority-class samples into majority class samples while classifying unbalanced samples. In view of this phenomenon,an deep AUC (area under curve) weighted naive Bayesian (DA - WNB) algorithm for unbalanced data classes is proposed,which is based on property of receiver operating characteristic curve and thought of deep feature weighting. In order to verify the effectiveness of the algorithm for unbalanced data classification,the AUC,true positive rate(TPR)and overall accuracy are taken as the indicators for experiments. The simulation results show that the algorithm can improve the minority-class classification accuracy highest to 60%,and can maintain the high overall accuracy.
作者
谭志
侯涛文
TAN Zhi;HOU Taowen(Beijing University of Civil Engineering and Architecture,Beijing 100044,China)
出处
《现代电子技术》
北大核心
2019年第9期118-122,共5页
Modern Electronics Technique
基金
省部级重点实验室开放基金项目:基于波束形成的小型风力机气动噪声识别研究(201605)
院级自然科学基金资助项目:汽车的振动与噪声测试(NJDZJ1622)~~
关键词
朴素贝叶斯
监督学习
感受性曲线
非均衡样本
深度特征加权
数据挖掘
naive Bayesian
supervised learning
receiver operating characteristic curve
unbalanced sample
deep feature weighting
data mining