期刊文献+

基于深度信念网络的K-means聚类算法研究 被引量:13

Research on K-means clustering algorithm based on deep belief network
下载PDF
导出
摘要 针对传统K-means聚类算法对高维非线性数据聚类效果不佳、聚类时间消耗大的问题,文中对高维数据的预处理进行研究,提出一种基于深度信念网络(DBN)的K-means聚类算法(DBNOK)。此算法首先使用多层受限玻尔兹曼机(RBM)对数据进行特征学习,并将学习到的隐含特征进行K-means相关参数和初始聚类中心进行交叉迭代优化。用DBNOK算法分别在低维数据集和高维数据集上进行实验,结果表明,DB-NOK算法聚类准确率优于标准的K-means算法和模糊均值聚类(FCM)算法。 In allusion to the problems that the traditional K-means clustering algorithm has poor clustering effect and long clustering time consumption for the high-dimensional nonlinear data,the preprocessing of the high-dimensional data is studied,and a K-means clustering(DBNOK)algorithm based on deep belief network(DBN)is proposed. In the algorithm,the multi-level restricted Boltzmann machine is used to conduct feature learning of the data. The K-means clustering is conducted for the learned implicit features. The initial learning parameters and clustering center are saved. The DBN is used to conduct cross iterative optimization of the relevant parameters and initial clustering center. An experiment was carried out with the low-dimensional dataset and high-dimensional dataset by using the DBNOK algorithm. The results show that the clustering accuracy of the DBNOK algorithm is superior to that of the standard K-means algorithm and fuzzy C-means(FCM)algorithm.
作者 杨慧婷 杨文忠 殷亚博 许超英 YANG Huiting;YANG Wenzhong;YIN Yabo;XU Chaoying(College of Information Science and Engineering,Xinjiang University,Urumqi 830046,China;College of Software,Xinjiang University,Urumqi 830046,China)
出处 《现代电子技术》 北大核心 2019年第8期145-150,共6页 Modern Electronics Technique
基金 国家自然科学基金资助项目(U1603115) 国家自然科学基金资助项目(61262087) 国家自然科学基金重点项目(U1435215) 国家"973"计划项目(2014CB340500)~~
关键词 K-MEANS算法 深度信念网络 受限玻尔兹曼机 高维数据 聚类分析 FCM算法 K-means algorithm DBN restricted Boltzmann machine high-dimensional data clustering analysis FCM algorithm
  • 相关文献

参考文献4

二级参考文献46

  • 1MarkoffJ. How many computers to identify a cat?[NJ The New York Times, 2012-06-25.
  • 2MarkoffJ. Scientists see promise in deep-learning programs[NJ. The New York Times, 2012-11-23.
  • 3李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 410 Breakthrough Technologies 2013[N]. MIT Technology Review, 2013-04-23.
  • 5Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors[J]. Nature. 1986, 323(6088): 533-536.
  • 6Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science. 2006, 313(504). Doi: 10. 1l26/science. 1127647.
  • 7Dahl G. Yu Dong, Deng u, et a1. Context-dependent pre?trained deep neural networks for large vocabulary speech recognition[J]. IEEE Trans on Audio, Speech, and Language Processing. 2012, 20 (1): 30-42.
  • 8Jaitly N. Nguyen P, Nguyen A, et a1. Application of pretrained deep neural networks to large vocabulary speech recognition[CJ //Proc of Interspeech , Grenoble, France: International Speech Communication Association, 2012.
  • 9LeCun y, Boser B, DenkerJ S. et a1. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, I: 541-551.
  • 10Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)[OLJ.[2013-08-01J. http://www. image?net.org/challenges/LSVRC/2012/.

共引文献979

同被引文献109

引证文献13

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部