摘要
针对在密集环境下的散乱件抓取(Bin Picking)问题,由于存在大量的遮挡,所以要求机器人能够在有遮挡情况、物体杂乱放置的环境中对未定义物体进行可靠的抓取点检测。本文提岀了一种新颖的基于VGG16-RGBD网络的抓取点检测方法,在密集环境下提高了机器人抓取的准确率和精度。通过在真实机器人上实现抓取动作,证明了此方法的有效性,表明了此方法可以准确检测物体的抓取点,并且在复杂环境中达到了 94%的成功率。
This paper focuses on the Bin Picking problem in dense environment. Because there are a lot of occlusions, the robot is required to detect undefined objects reliably in the environment where there are occlusions and objects are placed in disorder. In this paper, a novel grasping point detection method based on VGG16 - RGBD network is proposed, which improves the accuracy of robot grasping in dense environment. This paper proves the validity of this method by realizing grasping action on a real robot. It shows that this method can accurately detect the grasping points of unknown objects, and achieves 94% success rate in complex environment.
出处
《机电一体化》
2018年第11期27-31,共5页
Mechatronics
基金
国家自然科学基金资助项目(51675329,51675342)
上海宝山区科委基金资助项目(16-C-3)
机械系统与振动国家重点实验室课题(GZ2016KF001,GKZD020018)
上海交通大学“医工交叉研究基金”资助项目(YG2014MS12)
特种车辆及其传动系统智能制造国家重点实验室开放课题(GZ2016KF001)