期刊文献+

动力学粗糙度对高载荷低压涡轮气动性能影响的研究

Effect of Dynamic Roughness on Aerodynamic Performance of High-Lift LPT
原文传递
导出
摘要 动力学粗糙度是一种新型流动控制方法,通过分布式粗糙元高度沿壁面法向的非定常变化达到主动控制效果.本文基于高载荷低压涡轮叶栅T106D研究了静/动力学粗糙度对涡轮气动性能的影响,研究以FLUENT为计算工具,采用了动网格技术实现动力学粗糙度的数值模拟。首先开展了静力学粗糙度影响涡轮气动性能的研究,分析不同位置下的静力学粗糙度控制效果优异;在该研究结果基础上选取最优位置开展动力学粗糙度的数值模拟,结果表明,动力学粗糙度对气动性能的提升主要来自振动区域的压力/速度脉动产生的非定常涡与附面层相互作用。 Dynamic roughness is a new active flow control method, which achieves the desired effect through unsteady transformation by distributed roughness elements height. The research is based on LPT blade named T106 D.FLUENT was used to perform the numerical simulation. Dynamic mesh method was adopted to realize numerical simulation of dynamic roughness. To analysis the effect of statics roughness under different location, research of statics roughness was conducted at first;then,select the optimal position to carry out the dynamic roughness numerical simulation on the basis of the former study. The result shows that the aerodynamic performance of ascension come mainly from the interaction between the unsteady vortex and boundary layer.
作者 黄进 仲冬冬 杨荣菲 HUANG Jin;ZHONG Dong-Dong;YANG Rong-Fei(Jiangsu Province Key Laboratory of Aerospace Power Systems,School of energy and power,Nanjing University of Aeronautics & Astronautics Nanjing 210000,China)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2019年第4期759-766,共8页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.51406082)
关键词 主动控制 静力学粗糙度 动力学粗糙度 动网格 低压涡轮 active flow control statics roughness dynamic roughness dynamic mesh low pressure turbine
  • 相关文献

参考文献2

二级参考文献35

  • 1杨琳,邹正平,宁方飞,陈懋章.边界层转捩的数值模拟[J].航空动力学报,2005,20(3):355-360. 被引量:17
  • 2嵇峰,樊建人,任安禄,岑可法.气固两相圆柱绕流转捩两种模式的三维直接数值模拟[J].中国电机工程学报,2006,26(23):55-60. 被引量:11
  • 3郭婷婷,刘建红,李少华,徐忠.气膜冷却流场的大涡模拟[J].中国电机工程学报,2007,27(11):83-87. 被引量:13
  • 4Mayle R E. The role of laminar-turbulent transition in gas turbine engines[J]. ASME Journal of Turbomachinery, 1991, 113(4): 509-537.
  • 5Halstead D E, Wisler D C, Okiishi T H, et al. Boundary layer development in axial Compressors and trubines.. Part 2 of 4-Compressors[J] . ASME Journal of Turbomachinery, 1997, 119(3): 426-444.
  • 6Halstead D E, Wisler D C, Okiishi T H, et al. Boundary layer development in axial compressors and turbines: Part 3 of 4-LP Turbines[J]. ASME Journal of Turbomachinery, 1997, 119(2): 225 -236.
  • 7Suzen Y B, Huang P G. Modeling of flow transition using an intermittency transport equation[J]. Journal of Fluids Engineering, 2000, 122(2): 273-284.
  • 8Suzen Y B, Huang P G. Predictions of separated and transitional boundary layers under low-pressure turbine airfoils conditions using an intermittency transtport equation[C]. AIAA, Montreal, Canada, 2001.
  • 9Michelsssi V, Wissink J, Rodi W. Analysis of DNS and LES of flow in a low pressure turbine cascade with incoming wakes and comparison with experiments[J]. Flow, Turbulence and Combustion, 2002, 69(3): 295-330.
  • 10Kalitzin G, Wu X, Durbin PA. DNS of fully turbulent flow in a LPT passage[J]. International Journal of Heat and Fluid Flow, 2003, 24(4): 636-644.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部