期刊文献+

采用近似计算获得行列式误差可控的值

Error-Controlled Values of Determinant Obtained by Approximate Calculation
原文传递
导出
摘要 众所周知,行列式的精确计算具有重要意义.然而,由于计算误差的积累与传播,使其成为一个具有挑战性的难题.对于元素中不含变元的任意一个行列式,基于高斯消元法,文章通过精确控制每一个中间运算的精度,提出控制其计算结果误差的一个数值算法.利用该算法,不论行列式是否病态,均可获得其任意精度的值. It is well known that the accurate calculation of a determinant is of great significance. However, due to the accumulation and propagation of calculation errors,it has been a challenge. Based on Gaussian elimination method and by precisely controlling intermediate calculation accuracy, the paper proposes a numerical algorithm for controlling the result errors of the determinant whose entries do not contain any variable. With the algorithm, the value of the determinant can be obtained to arbitrary precision regardless of whether the determinant is ill-conditioned or not.
作者 赵世忠 符红光 钟秀琴 段静辉 刘静 ZHAO Shizhong;FU Hongguang;ZHONG Xiuqin;DUAN Jinghui;LIU Jing(School of Computer Science and Software Engineering, East China Normal University, Shanghai 200062;School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054;China Cybersecurity Review Technology and Certification Center, Beijing 100020)
出处 《系统科学与数学》 CSCD 北大核心 2018年第12期1506-1516,共11页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(61772203 11471209 61876034 61650110512 61332008 61572195) 国家"863"计划课题(2015AA015408) 博士后基金(2016M602677) 中央高校基金(ZYGX2016J086) 国家重点研发计划(2017YFB1001800)资助课题
关键词 误差可控计算 行列式 近似计算 可信计算 矩阵三角化 Error-controlled calculation determinant approximate calculation reliable computing matrix triangulation.
  • 相关文献

参考文献1

二级参考文献19

  • 1张景中,冯勇.采用近似计算获得准确值[J].中国科学(A辑),2007,37(7):809-816. 被引量:3
  • 2Lorenz E N. Deterministic nonperiodic flow. J Atmos Sci, 1963, 20:130-141.
  • 3Quinn K. Even had problems rounding off figures? This stock exchange has. Wall Street J, 1983, 202:37.
  • 4Stroud R. Rounding error costs DHSS 100 million pounds. Risks Digest, 1987, 5.
  • 5Robert S. Roundoff error and the patriot missile. SIAM News, 1992, 25:11.
  • 6Jakobsen B, Rosendahl F. The Sleipner platform accident. Struct Eng Int, 1994, 4:190-193.
  • 7Selby R G, Vecchio F J, Collins M P. The failure of an offshore platform. Concrete Int, 1997, 19:28-35.
  • 8McCullough B D, Vinod H D. The numerical reliability of econometric software. J Economic Literature, 1999, 37: 633-665.
  • 9Yang L, Zhou C C, Zhan N J, et al. Recent advances in program verification through computer algebra. Front Comput Sci China, 2010, 4:1-16.
  • 10Zou D, Wang R, Xiong Y F, et al. A genetic algorithm for detecting significant floating-point inaccuracies. In: Proceedings of the 37th IEEE International Conference on Software Engineering. California: IEEE Computer Society, 2015. 529-539.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部