期刊文献+

Influence exerted by bone-containing target body on thermoacoustic imaging with current injection 被引量:1

Influence exerted by bone-containing target body on thermoacoustic imaging with current injection
下载PDF
导出
摘要 Thermoacoustic imaging with current injection(TAI-CI) is a novel imaging technology that couples with electromagnetic and acoustic research, which combines the advantages of high contrast of the electrical impedance tomography and the high spatial resolution of sonography, and therefore has the potential for early diagnosis. To verify the feasibility of TAI-CI for complex bone-containing biological tissues, the principle of TAI-CI and the coupling characteristics of fluid and solid were analyzed. Meanwhile, thermoacoustic(TA) effects for fluid model and fluid–solid coupling model were analyzed by numerical simulations. Moreover, we conducted experiments on animal cartilage, hard bone and biological soft tissue phantom with low conductivity(0.5 S/m). By injecting a current into the phantom, the thermoacoustic signal was detected by the ultrasonic transducer with a center frequency of 1 MHz, thereby the B-scan image of the objects was obtained. The B-scan image of the cartilage experiment accurately reflects the distribution of cartilage and gel, and the hard bone has a certain attenuation effect on the acoustic signal. However, compared with the ultrasonic imaging, the thermoacoustic signal is only attenuated during the outward propagation. Even in this case, a clear image can still be obtained and the images can reflect the change of the conductivity of the gel. This study confirmed the feasibility of TAI-CI for the imaging of biological tissue under the presence of cartilage and the bone. The novel TAI-CI method provides further evidence that it can be used in the diagnosis of human diseases. Thermoacoustic imaging with current injection(TAI-CI) is a novel imaging technology that couples with electromagnetic and acoustic research, which combines the advantages of high contrast of the electrical impedance tomography and the high spatial resolution of sonography, and therefore has the potential for early diagnosis. To verify the feasibility of TAI-CI for complex bone-containing biological tissues, the principle of TAI-CI and the coupling characteristics of fluid and solid were analyzed. Meanwhile, thermoacoustic(TA) effects for fluid model and fluid–solid coupling model were analyzed by numerical simulations. Moreover, we conducted experiments on animal cartilage, hard bone and biological soft tissue phantom with low conductivity(0.5 S/m). By injecting a current into the phantom, the thermoacoustic signal was detected by the ultrasonic transducer with a center frequency of 1 MHz, thereby the B-scan image of the objects was obtained. The B-scan image of the cartilage experiment accurately reflects the distribution of cartilage and gel, and the hard bone has a certain attenuation effect on the acoustic signal. However, compared with the ultrasonic imaging, the thermoacoustic signal is only attenuated during the outward propagation. Even in this case, a clear image can still be obtained and the images can reflect the change of the conductivity of the gel. This study confirmed the feasibility of TAI-CI for the imaging of biological tissue under the presence of cartilage and the bone. The novel TAI-CI method provides further evidence that it can be used in the diagnosis of human diseases.
作者 Yan-Hong Li Guo-Qiang Liu Jia-Xiang Song Hui Xia 李艳红;刘国强;宋佳祥;夏慧(Institute of Electrical Engineering Chinese Academy of Sciences;University of Chinese Academy of Sciences)
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第4期230-241,共12页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant No.51477161) the National Key Research and Development Program of China(Grant No.2018YFC0115200) the Fund from the Chinese Academy of Sciences(Grant No.YZ201507)
关键词 BIOMEDICAL IMAGING thermo-acoustic IMAGING fluid–solid coupling low CONDUCTIVITY biomedical imaging thermo-acoustic imaging fluid–solid coupling low conductivity
  • 相关文献

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部