期刊文献+

一种改进的事件驱动的MFR雷达字提取方法 被引量:13

Novel Approach of Radar Word Extraction for MFRs Based on Event-driven Method
下载PDF
导出
摘要 从多功能雷达(MFR)脉冲序列中准确提取出雷达字是实现MFR行为认知的前提。作为脉冲序列分析的重要组成部分,现有的雷达字提取方法仅仅利用了脉冲到达时间这一信息,难以适应多参数灵活变化的复杂雷达信号。以传统的事件驱动方法为基础,提出一种改进的MFR的雷达字提取方法,对侦收到雷达脉冲依次进行量化、编码、计算事件概率,最后利用决策准则提取对应的雷达字。利用模拟生成的MFR脉冲序列对算法进行仿真,结果表明,所提方法能够有效提高提取准确率,且对虚假脉冲和漏脉冲有良好的适应性。该算法的应用能够为后续对MFR行为的准确辨识提供支撑。 Radar word extraction is the base for multi-function radar(MFR) behaviour cognition from the intercepted pulse sequence. As a crucial part in the pulse sequence analysis, common methods only utilize the time-of-arrival(TOA) of pulses, which perform not well when dealing with the complex signals with multiple parameters changing. Based on the traditional event-driven method, an improved approach is proposed, and radar words can be extracted by the steps of quantization coding, event probability calculation and word extraction decision. Simulation with hypothetical MFR signal data is presented, showing that the proposed method is effective and not sensitive to the missed or spur pulses. The extracted radar words can be used in MFR state recognition to support the adaptive radar countermeasures.
作者 王勇军 WANG Yongjun(Unit 91404 of PLA,Qinhuangdao 066001 ,China)
机构地区 解放军
出处 《现代雷达》 CSCD 北大核心 2019年第3期17-20,26,共5页 Modern Radar
关键词 多功能雷达 雷达字 事件驱动 脉冲描述字 multi-function radar radar word event-driven pulse description word
  • 相关文献

参考文献1

二级参考文献15

  • 1Wang A, Krishnamurthy V. Signal interpretation of multifunction radars: modeling and statistical signal processing with stochastic context free grammar[J]. IEEE Transactions on Signal Processing, 2008,56(3): 1106-1119.
  • 2Haykin S, Hero A O, Moulines E. Modeling, identification, and control of large-scale dynamical systems[C]∥IEEE International Conference on Acoustics, Speech and Signal Processing. 2005, 5: 945-948.
  • 3Dilkes F A, Visnevski N. Non-self-embedding context-free grammars for electronic warfare[R]. Ottawa: Defence Research & Development, 2004.
  • 4Visnevski N, Krishnamurthy V, Haykin S, et al. Multi-function radar emitter modelling: a stochastic discrete event system approach[C]∥Proceedings of the 42nd IEEE Conference on Decision and Control. 2003: 6295-6300.
  • 5Anselmo M, Giammarresi D, Varricchio S. Finite automata and non-self-embedding grammars[J]. Lecture Notes in Computer Science, 2003, 2608: 47-56.
  • 6Visnevski N. Syntactic modeling of multi-function radars[D]. Hamilton: McMaster University, 2005.
  • 7Visnevski N, Haykin S, Krishnamurthy V, et al. Hidden Markov models for radar pulse train analysis in electronic warfare[C]∥IEEE International Conference on Acoustics, Speech and Signal Processing. 2005: 597-600.
  • 8Visnevski N, Dilkes F A, Haykin S, et al. Non-self-embedding context-free grammars for multi-function radar modeling-electronic warfare application[C]∥IEEE International Radar Conference. 2005: 669-674.
  • 9Wang A, Krishnamurthy V, Dilkes F A, et al. Threat estimation by electronic surveillance of multifunction radars: a stochastic context free grammar approach[C]∥Proceedings of the 45th IEEE Conference on Decision and Control. 2006: 2153-2158.
  • 10Arasaratnam I, Haykin S, Kirubarajan T, et al. Tracking the mode of operation of multi-function radars[C]∥IEEE Conference on Radar. 2006: 233-238.

共引文献17

同被引文献117

引证文献13

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部