摘要
基于ABAQUS有限元分析软件对碳纤维增强聚醚醚酮(PEEK)复合材料板的热冲压成形工艺进行模拟,分析了复合材料在热冲压过程中的受力及变形特性,探讨了纤维铺层夹角、复合材料板层数和复合层类型对其成形性能的影响。结果表明:可以利用复合材料的工程常数建立材料的本构模型;在复合层类型的选择中,"三维实体-连续壳"更符合实际情况,仿真效果更好;复合材料的纤维铺层夹角是其热冲压成形的主要影响因素,而且同其他的纤维铺层夹角(0°,30°,45°)相比,复合材料在铺层夹角为90°时热冲压受力较好,但应变也较大,容易发生破坏;当总厚度一定时,复合材料板层数对材料的受力无明显影响;选择复合层类型为连续壳、90°夹角的复合材料板建立热冲压模型,仿真效果最好。
The thermal stamping process of carbon fiber reinforced polyether ether ketone(PEEK)composite sheet was simulated based on ABAQUS finite element analysis software.The mechanical and deformation characteristics of composite materials were analyzed during thermal stamping.The effects of the fiber interlayer angle and the number and the type of composite layers on the formability were discussed.The results showed that the constitutive model of composites could be established based on engineering constants of composites;three-dimensional solid-continuous shell was a more reasonable composite sheet type in line with the actual situation,providing a better simulation effect than other composite sheet types;the fiber interlayer angle of composites was the main factor affecting the thermal stamping process;compared with other composite materials with the fiber interlayer angles of 0°,30°and 45°,the composite material with the interlayer angle of 90°showed better stress performance while thermal stamping and was prone to being damaged due to higher strain;the layer number of composite material had no obvious effect on the stress at a fixed total thickness of the composite;and the simulation effect was optimized when the thermal stamping model of composite material was established with continuous shell and interlayer angle of 90°.
作者
张华伟
李博宏
Zhang Huawei;Li Bohong(School of Control Engineering,Northeastern University at Qinhuangdao,Qinghuangdao 066000)
出处
《合成纤维工业》
CAS
2019年第2期16-20,共5页
China Synthetic Fiber Industry
基金
国家自然科学基金项目(51475086)
河北省自然科学基金项目(E2016501118)
中央高校基本科研业务费专项资金资助项目(N172304036)
河北省高等学校科学技术研究重点项目(ZD2017315)
关键词
碳纤维
复合材料
热冲压成形
有限元模型
模拟仿真
carbon fiber
composite material
thermal stamping formation
finite element model
simulation