摘要
为研究飞秒激光脉冲对涡轮叶片材料的冲击打孔特性,使用双脉冲改写方程的激光光源项,并对涡轮叶片材料进行数值模拟,得到了镍基高温合金在飞秒激光双脉冲冲击打孔下的晶格和电子温度。通过对比单脉冲的模拟结果发现:双脉冲烧蚀情况下,材料电子和晶格出现2个峰值温度,且电子和晶格的平衡温度相比单脉冲提高345 k,平衡时间延长了5 ps,使用美国Ray Corp生产的飞秒脉冲激光器,对镍基高温合金材料在不同的激光参数下:激光脉冲宽度、激光能量、激光频率、脉冲间隔对材料的烧蚀进行双脉冲打孔,得到孔的形貌特征,并与单脉冲打孔对比发现双脉冲打孔的质量和效率优于单脉冲。
For research on the punching characteristics of the femtosecond pulse in the turbine blade material,a double pulse laser source was used to make an ablating temperature distribution on the Ni-base superalloy turbine blade material and to rewrite the laser source equation team for improving the double temperature equation team for improving the double temperature equation.From the simulation for the process of the ablating turbine blade material by the double pulse laser source,two temperature peaks appeared,that is an electron temperature and crystal lattice temperature on the ablating temperature distribution curve.We confirmed that there two temperature peaks on the ablating temperatures distribution curves obtained in the percussion drilling experiment on the Ni-base superalloy turbine blade material by the double pulse laser source origined from electron and crystal lattice vibration in the blade material.By comparing the result with that of the single pulse laser source,it is found that the temperature of two peaks raised 345 k higher and the equilibrium time prolonged 5 ps longer than the single pulse.The morphology of holes percussion-drilled of the blade material by using femtosecond double pulse laser produced by Ray Corp production U.S.A,with different laser parameters,such as laser pulse width,laser energy,laser frequency,and laser pulse interval were found good quality and efficiency.
作者
崔波
宫金良
王志文
CUI Bo;GONG Jinliang;WANG Zhiwen(College of Mechanical Engineering,Shandong University of Technology,Zibo Shandong 255000,China)
出处
《电子器件》
CAS
北大核心
2019年第2期291-295,共5页
Chinese Journal of Electron Devices
基金
国家自然科学基金项目(61303006)
山东省优秀中青年科学家科研奖励基金项目(BS2012ZZ009)
关键词
飞秒激光
高温合金
电子、晶格温度
冲击打孔
femtosecond laser
superalloy
electron,lattice temperature
impact punching