期刊文献+

改进的SVM分类算法在人脸年龄估计中的应用 被引量:4

Facial Age Estimation Based on Improved SVM Classification
下载PDF
导出
摘要 支持向量机的训练需要求解一个带约束的二次规划问题,但在数据规模很大情况下,经典训练方法将变得很困难。提出一种基于改进的混合蛙跳算法的SVM训练算法。针对混合蛙跳算法搜索速度慢且容易陷入局部极值的缺陷,将模拟退火思想引入到混合蛙跳算法中,提出一种改进的混合蛙跳算法,并将其应用到人脸年龄估计中去。另外使用核主成分分析算法、Gabor小波变换以及局域二值变换来提取人脸的特征,将这3种特征分别特征层和决策层融合后,得到更为适合人脸年龄的特征向量。实验结果表明,使用该算法得到的人脸年龄段分类的分类准确率相对较高。 Since training SVM requires solving a restrained quadratic programming problem which becomes difficult for large datasets,a improved Shuffled Frog Leaping Algorithm(SFLA)is proposed as an alternative to current algorithm.In order to overcome the defects of SFLA such as slow searching speed in evolution and local minimum,an improved algorithm in which the mechanism of Simulated Annealing(SA)is involved into basic SFLA is put forward.And it is applied into the facial age estimation.Besides the kernel Principal Component Analysis(PCA),Gabor wavelet transform as well as the LBP arithmetic are used as the feature extraction methods.Fusing these three feature extraction method in feature level and decision-making level,a more suitable method for extracting facial aging feature is obtained.The test results indicate that the algorithm enhances the convergence velocity outstandingly and averting the local extreme values effectively,and it is effective and feasible for SVM training,besides,the classification accuracy of age group is relatively higher.
作者 朱明 李希婷 周锋 王如刚 赵力 ZHU Ming;LI Xiting;ZHOU Feng;WANG Rugang;ZHAO Li(College of Information Engineering,Yancheng Institute of Technology,Yancheng Jiangsu 224051,China;School of Information Science and Engineering,Southeast University,Nanjing 210096,China)
出处 《电子器件》 CAS 北大核心 2019年第2期469-473,共5页 Chinese Journal of Electron Devices
关键词 特征融合 支持向量机 混合蛙跳 模拟退火 年龄估计 feature fusion Support Vector Machine(SVM) Shuffled Frog Leaping Algorithm(SFLA) Simulated Annealing(SA) age estimation
  • 相关文献

参考文献4

二级参考文献31

  • 1李炳宇,萧蕴诗,吴启迪.一种基于粒子群算法求解约束优化问题的混合算法[J].控制与决策,2004,19(7):804-807. 被引量:48
  • 2张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 3王雪梅,王义和.模拟退火算法与遗传算法的结合[J].计算机学报,1997,20(4):381-384. 被引量:123
  • 4Vapnik V N.The nature of statistical learning theory[M].New York: Springer-Verlag, 1995.
  • 5Cortes C,Vapnik V N.Supporter vector networks[J].Machine Learning, 1995,20( 3 ) : 273-297.
  • 6Kennedy J, Eberhart R C.Particle swarm optimization [C]//Proceedings of IEEE International Conference on Neural Networks,1995, 4:1942-1948.
  • 7Shi Y,Eberhart R C.A modified particle swarms optimizer[C]//Proceedings of IEEE Conference on Evolutionary Computation,Anchorage,Alaska,May 4-9,1998:69-73.
  • 8Paquet U,Engelbrecht A P.A new particle swarm optimizer for linearly constrained optimization[C]//Proceedings of IEEE Conference on Evolutionary Computation,2003,1:227-233.
  • 9Paquet U,Engelbrecht A P.Training support vector machines with particle swarms[C]//Proeeedings of International Joint Conference on Neural Networks,2003,2:1593-1598.
  • 10Eberhart R C,Shi Y.Comparing inertia weights and constriction factors in particle swarm optimization[C]//Proceedings of IEEE Conference on Evolutionary Computation,2000, 1:84-88.

共引文献137

同被引文献18

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部