期刊文献+

基于小增益定理的同步磁阻电机混沌控制 被引量:4

Chaos Control of Synchronous Reluctance Motor Based on Small Gain Theorem
下载PDF
导出
摘要 同步磁阻电机(SRM)在某些条件下会出现混沌运动,严重影响电机系统的动态性能和稳定运行,因此如何控制处于混沌运动时的同步磁阻电机是一个非常重要的问题。利用分岔图分析同步磁阻电机通向混沌的途径,揭示同步磁阻电机混沌吸引子的分形结构,同时分析了同步磁阻电机系统平衡点的局部稳定性,然后基于输入输出的状态稳定系统的小增益定理设计了简单反馈控制器,实现了对同步磁阻电机5个平衡点的镇定控制。 Since the synchronous reluctance motor will appear chaotic motion under certain conditions,the problem of how to stabilize chaotic motion in the synchronous reluctance motor is studied.In this paper,the bifurcation diagram is used to analyze the way of chaos for synchronous reluctance motor.The Poincare map reveals the fractal structure of the chaotic attractor of synchronous reluctance motor.And the local stability of the equilibrium point of the system is analyzed.Then a simple feedback controller is designed based on the small gain theorem of the input state stability system.The stabilization control of 5 equilibrium points of a synchronous reluctance motor is realized.
作者 吴雷 阳丽 李啟尚 萧华鹏 WU Lei;YANG Li;LI Qishang;XIAO Huapeng(Department of Teaching and Research,95795 Troops of the PLA,Guilin Guangxi 541003,China;College of Physics and Technology,Guangxi Normal University,Guilin Guangxi 541004,China)
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2019年第2期44-51,共8页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金(11665007 11447106) 广西自然科学基金联合资助培育项目(2018GXNSFAA138190) 广西高校青年教师基础能力提升计划(2018KY0085) 广西回国基金(桂科回0991021)
关键词 同步磁阻电机 小增益定理 混沌控制 LYAPUNOV函数 synchronous reluctance motor small gain theorem chaos control Lyapunov function
  • 相关文献

参考文献6

二级参考文献58

  • 1宁娣,陆君安.一个临界系统与Lorenz系统和Chen系统的异结构同步[J].物理学报,2005,54(10):4590-4595. 被引量:30
  • 2Kanellakopoulos I, Kokotovic P V, Morse A S. Systematic design of adaptive controllers for feedback linearizable systems[J]. IEEE Trans on Automatic Control, 1991, 36( 11 ) : 1241 - 1253.
  • 3Ge S S, Wang C. Direct adaptive NN control of a class of nonlinear systems [ J ]. IEEE Trans on Neural Networks, 2002, 13(1) : 214-221.
  • 4Zhang T P, Ge S S. Robust adaptive neural control of SISO nonlinear systems with unknown dead-zone and completely unknown control gain [ C ]//IEEE International Symposium on Intelligent Control. Munich, Germany, 2006 : 88 - 93.
  • 5Zhang T P, Ge S S. Direct adaptive NN control of nonlinear systems in strict-feedback form using dynamic surface control [ C ]//IEEE International Symposium on Intelligent Control. Singapore, 2007 : 315 - 320.
  • 6Sontag E D. Smooth stabilization implies coprime factorization [ J]. IEEE Trans on Automatic Control, 1989, 34(4) : 435 -443.
  • 7Jiang Z P, Teel A R, Praly L. Small-gain theorem for ISS systems and applications [ J ]. Math Control Signals Systems, 1994, 7 : 95 - 120.
  • 8Jiang Z P, Mareels Iven M Y. A small-gain control method for nonlinear cascaded systems with dynamic uncertainties [ J]. IEEE Trans on Automatic Control, 1997, 42( 3 ) : 292 -308.
  • 9Yang Y S, Zhou C J. Robust adaptive fuzzy tracking control for a class of perturbed strict feedback nonlinear systems via small-gain approach [ J]. Information Sciences, 2005, 170(2):211- 234.
  • 10Zhang T P, Ge S S. Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zone and gain signs [J]. Automatica, 2007, 43(6) : 1021 -1033.

共引文献11

同被引文献49

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部