期刊文献+

基于提升度的KNN分类子的分类原则改良模型 被引量:2

Improving Classification Rule with Lift Measure for KNN Classifier
下载PDF
导出
摘要 针对非均匀类数据,本文提出K最近邻分类子的一个分类原则改良方法,能够度量待分类数据的K个近邻点中的类比率提升量,增大了最小类数据的竞争力,明显地提高了小类数据的分类正确率。实验结果表明,本文提出的改良分类原则对非均匀数据分类的准确率明显高于传统的KNN分类算法。 A KNN classifier is presented for classifying imbalanced data.A gain model is constructed for measuring the lift of probability of a class label.The competition of minority class is well enhanced in imbalanced-class dataset.And the accurate rate of classifying minor-class data is significantly improved.The experimental results show that in the setting of imbalanced-class datasets,the proposed approach has significantly improved the classification accuracy,compared with the existing KNN classifiers.
作者 吴昊 秦立春 罗柳容 WU Hao;QIN Lichun;LUO Liurong(College of Computer Science and Information Technology,Guangxi Normal University,Guilin Guangxi 541004,China;Liuzhou Railway Vocational Technology College,Liuzhou Guangxi 545616,China)
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2019年第2期75-81,共7页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金(61672177)
关键词 分类 KNN分类算法 非均匀数据 提升度 classification KNN algorithm imbalanced data lift
  • 相关文献

参考文献2

二级参考文献26

  • 1Ian H.Witten,Eibe Frank.数据挖掘实用机器学习技术[M].北京:机械工业出版社,2006
  • 2WU X, KUMAR V, QUINLAN J R, et al. Top 10 algorithms in data mining[J]. Knowledge Information Systems, 2007, 14(1) : 1-37.
  • 3TANP,STEINBACHM.,KUMARV.数据挖掘导论[M].范明,范宏建,译.北京:人民邮电出版社,2006.
  • 4COVER T, HART P. Nearest neighbor pattern classification [J]. IEEE Transactions on Information Theory, 1967, 13(1) :21 - 27.
  • 5WILSON D, TONY R. Improved heterogeneous distance functions [ J]. Journal of Artificial Intelligence Research, 1997, 6 (1) : 1-34.
  • 6BEYER K, GOLDSTEIN J, RAMAKRISHNAN R, et al. When is nearest neighbor meaningful? [ C]//Proc. 7th Int. Conf. Database Theory. Springer, Jerusalem, Israel, 1999:217-235.
  • 7MOORE A W, LEE M S. Efficient algorithms for minimizing cross validation error[ C]//Proceedings of the 11 th Interna- tional Conference on Machine Learning. New Brunswick, USA : ACM Press, 1994.
  • 8FRIEDMAN J, BENTLEY J, FINKEL R. An algorithm for finding best matches in logarithmic expected time [ J ]. ACM Transactions on Mathematical Software, 1977, 3 (3) : 209-226.
  • 9ZHANG S C. Parimputation: From Imputation and Null-Imputation to Partially Imputation [ J ]. IEEE Intelligent Informat- ics Bulletin, 2008, 9(1): 32-38.
  • 10WILSON D, MARTINEZ T. Reduction techniques for exemplar-based learning algorithms [ J ]. Machine Learning, 2000, 38 (3): 257 - 286.

共引文献3

同被引文献44

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部