期刊文献+

互补色小波域图像质量盲评价方法 被引量:4

Blind Image Quality Assessment with Complementary Color Wavelet Transform
下载PDF
导出
摘要 图像色彩空间的RGB通道具有密切的关系,图像质量的改变会改变这样的关系.然而传统图像质量评价方法大多基于灰度图像统计特性,忽略了颜色通道间关系信息.为充分利用颜色信息,本文基于新近提出的互补色小波变换提出一种图像质量盲评价方法.文章建立了图像互补色域自然场景统计、多尺度和方向性能量分布等模型.分析表明:这些模型不仅涵盖了传统灰度方法所能描述的信息,而且还能借助于互补色来有效表示彩色图像各通道之间的信息联系,提供表征图像质量的一组高效特征.基于这些特征,我们提出的图像质量盲评价的方法能有效提取图像的失真统计特征,能给出与人眼主观评价图像质量结果保持高度一致、优于现有文献报道盲方法、且可与非盲(全参考)方法相比拟的评价结果. In the image color space,the RGB channels have strong correlations.The quality change of an image will lead to the change of channel correlations.However,most traditional image quality assessment(IQA) methods,based on grayscale image statistics,ignore such correlation information among color channels.In this paper,to utilize the color information,we propose a blind IQA method based on the recent proposed complementary color wavelet transform(CCWT).We provide models for the complementary color nature scene statistics,multi-resolution and multi-directionality energy distributions of an image.The analysis shows that our models not only cover the information of traditional methods,but also provide the relation information among color channels.A group of high-efficiency image quality features is then given.Based on these features,our blind IQA method can effectively extract the distortion statistic features and provide assessment results.Our IQA results are agreeing with the human subjective,better than the state-of-the-art blind IQA results,and close to the full-reference ones.
作者 陈扬 李旦 张建秋 CHEN Yang;LI Dan;ZHANG Jian-qiu(Department of Electronic Engineering and the Research Center of Smart Networks and Systems,School of Information Science and Technology,Fudan University,Shanghai 200433,China)[)
出处 《电子学报》 EI CAS CSCD 北大核心 2019年第4期775-783,共9页 Acta Electronica Sinica
基金 国家自然科学基金(No.61571131)
关键词 图像质量评价 无参考 互补色小波 彩色图像 image quality assessment no reference complementary color wavelet transform color image
  • 相关文献

参考文献5

二级参考文献71

  • 1杨春玲,陈冠豪,谢胜利.基于梯度信息的图像质量评判方法的研究[J].电子学报,2007,35(7):1313-1317. 被引量:62
  • 2Wifried Osberger.Perceptual Vision Models for Picture QualityAssessment and Compression Applications[D].Queensland:Department of Computer Science&Computer Engineering,Queensland University of Technology,1999.
  • 3Eric C Larson,Damon M Chandler.Most apparent distortion:ful-l reference image quality assessment and the role of strategy[J].Journal of Electronic Imaging,2010,19(1):011006-1-011006-21.
  • 4Z Wang,A C Bovik.A universal image quality index[J].IEEESignal Processing Letters,2002,9(3):81-84.
  • 5Wang Z,Bovik A C,Sheikh H R,et al.Image quality assess-ment:from error visibility to structural similarity[J].IEEETrans on Image Processing,2004,13(4):600-612.
  • 6Anush Krishna Moorthy,Alan Conrad Bovik.Visual importancepooling for image quality assessment[J].IEEE Journal of Se-lected Topics in Signal Processing,2009,3(2):193-201.
  • 7Min Zhang,Xuanqin Mou.A psychovisual image quality met-ric based on mult-i scale structure similarity[A].ICIP 2008[C].San Diego:IEEE,2008.381-384.
  • 8Emil Dumic,Sonja Grgic,Mislav Grgic.New image-qualitymeasure based on wavelets[J].Journal ofElectronic Imaging,2010,19(1):011018-1-19.
  • 9Sheikh H R,Wang Z,Cormack L,et al.Live image qualityassessment database release 2[DB/OL].http://live.ece.u-texas.Edu/research/quality,2005.
  • 10Wang Z,Bovik A C,Sheikh H R,et al.Image quality assessment:From error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612.

共引文献48

同被引文献28

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部