期刊文献+

基于无监督栈式降噪自编码网络的显著性检测算法 被引量:9

Saliency Detection Based on Unsupervised SDAE Network
下载PDF
导出
摘要 针对现有的显著性检测算法检测目标类型单一、通用性差的问题,提出一种基于无监督栈式降噪自编码网络的显著性检测算法.该算法利用无监督栈式降噪自编码网络(Stacked Denoising Auto Encoder,SDAE)在多个尺度对原始图像进行稀疏重构,将原始图像与SDAE网络重构图像之间的差作为显著图,二值化后的显著图作为显著性目标检测结果.在SDAE网络训练过程中,将原始图像作为原始数据,网络重构的图像作为观察数据.为了提升网络训练效率,首先利用无监督逐层贪婪方法训练同结构的深度信念网络(Deep Belief Network,DBN),将训练得到的DBN网络参数设为SDAE网络的初始参数,再计算原始数据与观察数据之间的互信息作为网络收敛代价,利用反向传播进行网络参数微调.实验表明,该网络模型可以完成多类型目标的显著性检测,具有通用性好,准确度高等优点. The traditional saliency detection method is difficult to detect different kinds of saliency target simultaneously.In order to solve this problem,an algorithm based on unsupervised SDAE network is proposed in this paper.The stacked denoising auto-encoder(SDAE) network is used to sparsely reconstruct original image in multiple scales.The difference between the original image and the reconstructed image is used as a saliency map,and the binaryzation of the saliency map is used as salient detection result.In the process of SDAE network training,the original image is used as the original data and the reconstructed images are treated as observed data.In order to improve the efficiency of network training,the deep belief network(DBN) is trained by greedy method in each layer without supervising,and the network parameters are delivered to stacked denoising auto-encoder(SDAE) network as initial parameters.Then,the mutual information between the original data and the observed data is used as loss function,and the network parameters are tuned by backpropagation.The experiments show that the proposed algorithm can accomplish the saliency detection of various targets,which has the advantages of good universality and high accuracy.
作者 李庆武 马云鹏 周亚琴 邢俊 LI Qing-wu;MA Yun-peng;ZHOU Ya-qin;XING Jun(College of Internet of Things Engineering,Hohai University,Changzhou,Jiangsu 213022,China;Changzhou Key Laboratory of Sensor Networks and Environmental Sensing,Changzhou,Jiangsu 213022,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2019年第4期871-879,共9页 Acta Electronica Sinica
基金 国家重点研发计划(No.2018YFC0406900) 江苏省重点研发计划(No.BE2016071 No.BE2017057 No.BE2017648)
关键词 显著性检测 无监督网络 栈式降噪自编码 深度信念网络 互信息 saliency detection unsupervised network stacked denoising auto-encoder(SDAE) deep belief network(DBN) mutual information
  • 相关文献

参考文献5

二级参考文献28

  • 1吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979. 被引量:52
  • 2Datta R, Joshi D,Li J,Wang J Z. Image retrieval: ideas,influences, and a'ends of the new age[ J].ACM Computing Surveys, 2008,40(2) : 1 - 60.
  • 3Rui Y, Huang T S, Ortega M,Mehrotra S. Relevance feedback: A power tool for interactive content-based image retrieval[ J]. IEEE Trans on Circuits and Systems for Video Technology, 1998,8(5) :644 - 655.
  • 4Liu Y, Zhang D,Lu G. Region-based image retrieval with high- level semantics using decision tree learning[ J]. Pattern Recog- nition, 2008,41 (8) : 2554 - 2570.
  • 5Zhang C, Chen T. An active learning framework for content- based information retrieval [ J ]. IEEE, Trans on Multimedia, 2002,4(2) :260 - 268.
  • 6Jing,F,Li,M, et al. An efficient and effective region-based im- age relrieval framework [ J]. IEEF Trans on Image Processing, 2004,13(5) :699 - 709.
  • 7Zlaou Z H, Chen K J, et al. Enhancing relevance feedback in image retrieval using unlabeled data[ J] .ACM Tram on Infor- marion Systems, 2006,24(2 ) :219 - 244.
  • 8Zhou D, Bousquet 0, Lal T N, Weston J, Scholkopf B. Learn- ing with local and global consistency[ A]. Proc of Advances in Neural Information Processing Systems (NIPS' 03) [ C ]. Vancouver:Curran Associates Inc, 2003.321- 328.
  • 9Zhou D, Weston J, Gretton A, Bousquet O, et al. Ranking on data manifolds [ A ]. Proc of Advances in Neural Information Processing Systems ( NIPS' 03) [ C ]. Vancouver: Curran Associates Inc,2003.169- 176.
  • 10He J, Li M, Zhang H J, Tong H H, Zhang C. Generalized manifold-ranking based image relrieval [ J ]. IEEE Trans on Image Processing, 2006,15(10) : 3170 - 3177.

共引文献63

同被引文献97

引证文献9

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部