期刊文献+

目前大学生就业难问题的解决方案探讨

A Solution to the Current Problem of College Students' Employment Difficulties
下载PDF
导出
摘要 近年来,我国毕业生就业形势严峻,毕业生自身能力与岗位要求存在差距,导致企业人才短缺与大学生就业困难的双重问题。为解决上述问题,将从职位供给方的人才偏好分析入手,为在校学生指明学习与发展方向,进一步分析供给方人才需求信息与社会职位需求变动趋势,给予在校生理想职位的就业前景分析与职业规划建议,并为在校生提供理想职位与公司的实习机会,建立学生与企业双向评价机制,为后期招聘的职位供需双方了解彼此情况提供有价值的参考信息,同时也为毕业生提供企业招聘信息。为实现以上目标,构建了下述四个模型:首先,通过TextRank方法建立关键词提取模型,用于提取学生建立中的关键信息和了解企业用人偏好;其次,通过共词分析、聚类分析的方法和构建聚类分析谱系图建立匹配与储存优化模型,将学生与适合的企业配对;第三,通过BP神经网络的思想建立就业率预测模型,为学生就业指导;第四,通过PageRank模型思想建立学生企业双向评价选择模型,实现学生与企业的双向评价目标。 In recent years, the employment situation of Chinese graduates is grim. There is a gap between graduates’ own ability and job requirements, which leads to the double problem of talent shortage and employment difficulties for college students. In order to solve the above problems, this paper will start from the talent preference analysis of the position supply side, specify the learning and development direction for the students in the school, further analyze the supply demand information and the trend of the social job demand, and give the students the ideal employment prospects analysis. With career planning recommendations, and provide students with ideal positions and internship opportunities for the company, establish a two-way evaluation mechanism for students and enterprises, providing valuable reference information for the post-employment positions of both parties to understand each other’s situation.At the same time, it also provides graduates with corporate recruitment information. In order to achieve the above objectives, this paper builds the following four models. Firstly, the keyword extraction model is established by the TextRank method, which is used to extract the key information in the student establishment and understand the enterprise user preference. Secondly, through the method of co-word analysis, cluster analysis and the construction of cluster analysis pedigree map to establish a matching and storage optimization model, students and suitable companies are paired. Next, through the idea of BP neural network, the employment rate prediction model is established to guide students’ employment. Finally, through the PageRank model idea, the two-way evaluation selection model of student enterprises is established to realize the two-way evaluation goal of students and enterprises.
作者 吉朝瑜 梁奕宁 宋甲行 JI Zhaoyu;LIANG Yining;SONG Jiaxing(Northwest University, Xi’an 710069, China)
机构地区 西北大学
出处 《科技创业月刊》 2019年第3期55-59,共5页 Journal of Entrepreneurship in Science & Technology
关键词 初始阶段 TextRank法 聚类分析 BP神经网络 PageRank法 initial stage TextRank method clustering analysis BP neural network PageRank method
  • 相关文献

参考文献5

二级参考文献34

共引文献641

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部