期刊文献+

面向图像的有效目标区域提取方法 被引量:5

Extraction Method for Key Object Region in Images
下载PDF
导出
摘要 针对图像标注、目标识别等实际应用中图像的前景目标定位不够准确的问题,提出了一种图像中的有效目标区域提取方法。该方法以提取图像的前景目标为目的,将目标区域提取问题转化为二分类问题,实现了对图像中有效目标区域的提取,主要包括4个步骤:利用选择性搜索算法生成图像中的候选目标区域;通过对像素值的差值化处理来进行图像区域的特征增强;基于深度学习实现对候选目标区域进行分类;区域选择与融合。在MSCOCO数据集上进行实验,结果表明,该方法在保证较高召回率的基础上,达到了比现有多种算法更加准确的目标区域定位结果。 To improve the performance of object region extraction, which is usually used in some practical applications such as image annotation and object detection, we present a new approach to the key object region extraction from images. The method ignores the category information of various objects and transforms the task into a binary classification problem. Our method includes four steps: First, a selective search algorithm is used to generate candidate object regions in the image;Second, the feature enhancement of image regions is performed by difference processing of the pixel values;Then, we classify the candidate object regions based on deep learning;Finally, region selection and fusion are finished. Experimental results over MSCOCO dataset demonstrate that the proposed approach achieves more accurate results than several related methods with high recall rates.
作者 崔云博 杜友田 王航 CUI Yun bo;DU Youtian;WANG Hang(Ministry of Education. Key Lab for Intelligent Networks and Network Security,Xi'an Jiaotong University,X i?an 710049,China)
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2019年第5期52-57,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(61572397) 北京字节跳动科技有限公司合作项目(20180509) 中央高校基本科研业务费专项资金项目(xjj2017063)
关键词 目标区域提取 选择性搜索 特征增强 深度学习 object region extraction selective search feature enhancement deep learning
  • 相关文献

同被引文献47

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部