摘要
设φ:M^n→N■^(n+p)R^(n+p+1)是极小曲率闭子流形,N^(n+p)是欧氏空间R^(n+p+1)的超曲面,如果主曲率|λ|≥c(c>0),则有∫_M[np(c^2-2K)-S]Sd V≥0,其中K(x)为M中每一点处所有截面曲率的下确界.特别地,当对任意点x∈M^n,均有K≤0时,则∫_M[np(c^2-K)-S]Sd V≥0.此结论推广了Yau^([7])中常曲率空间极小子流形的情形.
Let M n is closed minimal curvature submanifolds of N^n+p , where N^n+p is hypersurface of R^n+p+1 . If the main curvature |λ|≥c(c>0), then we have ∫ M n [np(c^2-2K)-S]S d V≥0 where K is the function assigns to each point of M the infinimum of the sectional curratures of M at the point. in particular, if K(x)≤0 for any point x∈M n ,we have ∫ M n [np(c^2-K)-S]S d V≥0. Our conclusion promotes Yau [7]'s.
作者
杜弘杨
DU Hongyang(Faculty of Mathematics and Statistics,Hubei University,Wuhan 430062,China)
出处
《湖北大学学报(自然科学版)》
CAS
2019年第3期246-250,共5页
Journal of Hubei University:Natural Science
关键词
极小曲率子流形
第二基本形式
刚性定理
积分不等式
minimal curvature submanifold
the second fundamental form
rigidity theorem
integral inequality