期刊文献+

一种面向硬件木马检测的SVDD增量学习改进算法 被引量:3

Improved Incremental SVDD Learning Algorithm for Hardware Trojan Detection
下载PDF
导出
摘要 在基于功耗旁路分析与支持向量数据描述(Support Vector Data Description,SVDD)算法的硬件木马检测方法中,为优化完善检测模型需要对新增信号样本进行增量学习,针对经典SVDD增量学习(Incremental SVDD learning,ISVDD)对新增样本学习范围无约束而导致的欠拟合问题,提出了一种适用于硬件木马检测的SVDD增量学习算法。该算法利用新增样本与原始样本之间方差、均值和中位数的关系构建自适应参数,选取更为有效的新模型训练样本,在减少学习时间的同时提高模型检测精度。采用多芯片FPGA旁路信号采集平台分别对3片受工艺扰动不同的芯片进行信号采集,并对各芯片中所植入的相同规模硬件木马进行检测,实验结果表明,该算法较ISVDD相比有更高的检测精度,验证了其有效性。 Hardware Trojan detection method based on power side-channel analysis and Support Vector Data Description(SVDD)algorithm, it is necessary to incrementally learn new signal samples to optimize the detection model. For the underfitting problem caused by the unconstrained learning range of the new sample of Incremental SVDD learning(ISVDD), an SVDD incremental learning algorithm for hardware Trojan detection is proposed. The algorithm uses the variance, mean and median relationship between the new sample and the original sample to construct the adaptive parameter,selects more effective new model training samples to improve model detection accuracy while reducing learning time. A multi-chip FPGA side-channel signals acquisition platform is used to collect the signals of three chips with different process variations, and the same-sized hardware Trojans implemented in each chip are detected. Experimental results show that the proposed algorithm has higher detection accuracy than ISVDD, which verifies its effectiveness.
作者 李雄伟 魏延海 王晓晗 徐璐 孙萍 LI Xiongwei;WEI Yanhai;WANG Xiaohan;XU Lu;SUN Ping(Shijiazhuang Campus, The Army Engineering University of PLA, Shijiazhuang 050003, China;Unit 31432 of Strategic Support, China;Unit 61785 of PLA, China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第9期43-48,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61271152 No.51377170) 国家青年科学基金(No.61602505) 河北省自然科学基金(No.F2012506008)
关键词 硬件木马 旁路分析 支持向量数据描述 增量学习 hardware Trojan side-channel analysis Support Vector Data Description(SVDD) incremental learning
  • 相关文献

参考文献6

二级参考文献29

  • 1苏静,赵毅强,何家骥,刘沈丰.旁路信号主成分分析的欧式距离硬件木马检测[J].微电子学与计算机,2015,32(1):1-4. 被引量:13
  • 2杨敏,张焕国,傅建明,罗敏.基于支持向量数据描述的异常检测方法[J].计算机工程,2005,31(3):39-42. 被引量:17
  • 3Tax D M J, Duin R P W. Support Vector Data Description[J]. Machine Learning, 2004, 54(1 ): 45-66.
  • 4Vapnik V N. The Nature of Statistical Learning Theory[M]. NewYork, USA: Springer Verlag, 1999.
  • 5Xin Dong, Wu Zhaohui, Zhang Wanfeng. Support Vector Domain Description for Speaker Recognition[C]//Proc. of 2001 IEEE Signal Proocessing Society Workshop. Falmouth, UK: Is. n.], 2001.
  • 6Syed N, Liu H, Sung K. Incremental Learning with Support Vector Machines[C]//Proc. of the Workshop on Support Vector Machines at the International Joint Conference on Artificial Intelligence. Stockholm, Sweden: Morgan Kaufmann, 1999: 876-892.
  • 7Alpaydin E, Kaynak C. UCI Repository of Machine Leaming Databases[EB/OL]. (1998-07-01). http://www.ics.uci.edu/-mleam/ MLRepository.html.
  • 8燕东渭,孙田文,杨艳,方建刚,刘志镜.支持向量数据描述在西北暴雨预报中的应用试验[J].应用气象学报,2007,18(5):676-681. 被引量:18
  • 9Bhunia S, Hsiao M S, Bavga M, et ak Hardware Trojan Attacks: Threat Analysis and Countermeasures[J]. Pro- ceedings of the IEEE, 2014,10(8):1229-1247.
  • 10Xiao K, Forte D, Tehranipoor M. A Novel Built-In Self-Authentication Technique to Prevent Inserting Hardware Trojans[J]. IEEE Transactions on comput- er-aided design of integrated circuits and systems, 2014,33(12) :1778-1791.

共引文献19

同被引文献32

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部