摘要
针对人口统计数据无法精细直观反映人口真实的空间分布状况的问题,该文以福建省为例,对其2015年的人口数据进行空间化。以多源数据为基础数据,在县级尺度上采用了空间回归模型构建福建省2015年福建省500 m人口空间分布数据,在乡镇尺度上对其空间化结果进行精度验证并与WorldPop、中国公里网格人口分布数据集比较。结果表明:NPP/VIIRS夜间灯光、路网、DEM、土地利用数据与人口具有较强的相关性,有足够能力模拟人口的空间分布;对于2015年福建省人口数据空间化,空间误差模型比空间滞后模型的回归拟合效果更好;人口数据空间化结果精度比较高,在空间上能精细展现2015年福建省的人口分布状况;人口高值区主要集中在县城所在地,人口呈现出主城区高、四周低的空间分布格局。
Aiming at the problem that traditional census data can’t reflect the real spatial distribution of population visually,this paper took Fujian Province as a case study to conduct spatialization of population data for it in2015. A 500 m spatial population distribution data for Fujian Province in 2015 was established based on multisource data by spatial regression at county scale. The spatialization result accuracy of the population distribution data was verified at township scale and compared with the WorldPop and China population grid distribution datasets. The results show that NPP/VIIRS nighttime light,road,DEM and land use had high correlation with the population and could be used to simulate the population spatial distribution. The spatial error model was more effective than the spatial lag model in fitting the population for Fujian Province in 2015. The result of spatialization of population data produced was quite accurate,and it could show the fine population distribution for Fujian province in 2015 from space. High population areas were mainly concentrated in the county seat. The population presented a spatial distribution pattern that the population in the main urban area was high and the population in the surrounding area was low.
作者
杨晓荣
陈楠
YANG Xiaorong;CHEN Nan(Spatial Information Research Center, Fuzhou University, Fuzhou 350116, China;Key Lab for Spatial Data Miningand Information Sharing of Ministry of Education, Fuzhou University, Fuzhou 350116, China)
出处
《贵州大学学报(自然科学版)》
2019年第2期79-84,95,共7页
Journal of Guizhou University:Natural Sciences
基金
国家自然科学基金项目资助(41771423)
福建省重点科技项目资助(2018Y0054)
福州大学空间数据挖掘与信息共享教育部重点实验室开放基金项目资助(2017LSDMIS08)
关键词
人口
影响因素
空间回归
空间化
population
influencing factors
spatial regression
spatialization