期刊文献+

多波束测深技术在洋中脊构造地貌解译中的应用 被引量:3

The Application of the Multi-beam Echo Sounding Technique in Tecto-geomorphic Interpretation of Mid-ocean Ridges
下载PDF
导出
摘要 多波束测深技术在国际上是海洋科学研究、海底资源开发和海洋工程建设中的重要技术手段。基于对国内外多波束地形数据的广泛调研,对洋中脊附近洋底构造地貌形态进行分析研究。文中利用不同扩张速率洋中脊附近的50 m分辨率的多波束地形数据,基于数字地形空间分析方法,利用不同滑动窗口和阈值自动识别来提取洋中脊附近地形面的最大、最小曲率以及坡度,并以此对洋中脊进行构造解译。对中大西洋洋中脊和东太平洋洋隆两个实验结果的定量分析表明,基于地形曲面曲率和坡度的洋中脊构造解译方法是有效且可行的,其结果为洋中脊构造样式解译提供重要参考。但是相比之下,50 m分辨率下慢速扩张洋中脊的应用效果要明显好于快速扩张洋中脊,这可能与不同扩张速率的断层尺寸及发育规律有关。 It is of great significance to understand the evolution of geological structures of mid-ocean ridges with the surface morphology of the ocean floor near a mid-ocean ridge. Because of thin sedimentary cover, the structure and distribution of ocean floors directly reflect the lithospheric characters of oceanic crusts and the expansion of mid-ocean ridges. Multi-beam echo sounding technology plays a vital role in ocean explorations because it is one of important methods in marine scientific research, benthonic resource exploitation, and ocean engineering construction. The multi-beam terrain data provide a more convenient way to study ocean floor structures near mid-ocean ridges. In this paper, we use different expansion rates of ridge near 50 m precision of multi-beam terrain data, based on the multi-scale space analysis method, using different sliding windows and automatic threshold recognition and extraction of terrain near mid-ocean ridges to the maximum, minimum curvatures and slopes, and the structures of the mid-ocean ridges according to this interpretation. For mid-ocean ridges in the Atlantic and eastern Pacific Oceans, two quantitative analysis of the test results show that, based on the terrain surface curvatures and slopes of the mid-ocean ridge, the structural interpretation method is effective and feasible and the results for the mid-ocean ridge tectonic style interpretations provide an important reference. However, in comparison, application to slow spreading of mid-ocean ridges with 50 m accuracy is better than that of the rapid spreading of mid-ocean ridges, which may be related to the size of faults and the development law of different rifting rates.
作者 宋珏琛 李江海 雷雨婷 洛怡 SONG Juechen;LI Jianghai;LEI Yuting;LUO Yi(Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing 100871,China)
出处 《高校地质学报》 CAS CSCD 北大核心 2019年第2期251-258,共8页 Geological Journal of China Universities
基金 中国大洋十三五印度洋靶区断裂系统及其控矿作用研究课题(DY135-S2-1-01) 科技部重大专项(2016ZX05033002)联合资助
关键词 多波束测深技术 洋中脊 构造解译 空间分析 分析滑动窗口 扩张速率 multi-beam echo sounding technology mid-ocean ridges structure interpretation multi-scale space analysis sliding window spreading rate
  • 相关文献

参考文献3

二级参考文献52

  • 1[10]Carbotte S M, MacDonald K C. Comparison of sea-floor tectonic fabric at intermediate, fast, and super fast spreading ridges - influence of spreading rate, plate motions, and ridge segmentation on fault patterns[J]. Journal of Geophysical Research-Solid Earth, 1994, 99 (B7): 13 609-13 631.
  • 2[11]Shaw W J, Lin J. Models of ocean ridge lithospheric deformation: Dependence on crustal thickness, spreading rate, and segmentation[J]. Journal of Geophysical Research-Solid Earth, 1996, 101 (B8): 17 977-17 993.
  • 3[12]Tong C H, Barton P J, White R S, et al. Influence of enhanced melt supply on upper crustal structure at a mid-ocean ridge discontinuity: A three-dimensional seismic tomographic study of 9 degrees N East Pacific Rise[J]. Journal of Geophysical Research-Solid Earth, 2003, 108 (B10): 2 464.
  • 4[13]Tong C H, Pye J W, Barton P J, et al. Asymmetric melt sills and upper crustal construction beneath overlapping ridge segments: Implications for the development of melt sills and ridge crests[J]. Geology, 2002, 30 (1): 83-86.
  • 5[14]Dick H J B, Lin J, Schouten H. An ultraslow-spreading class of ocean ridge[J]. Nature, 2003, 426 (6 965): 405-412 .
  • 6[15]Shaw P R, Lin J. Causes and consequences of variations in faulting style at the mid-Atlantic ridge[J]. Journal of Geophysical Research-Solid Earth, 1993, 98 (B12): 21 839-21 851.
  • 7[16]Okino K, Curewitz D, Asada M, et al. Preliminary analysis of the Knipovich Ridge segmentation: influence of focused magmatism and ridge obliquity on an ultraslow spreading system[J]. Earth and Planetary Science Letters, 2002, 202 (2): 275-288.
  • 8[17]Michael P J, Langmuir C H, Dick H J B, et al. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean[J]. Nature, 2003, 423:956-962.
  • 9[18]Briais A, Rabinowicz M. Temporal variations of the segmentation of slow to intermediate spreading mid-ocean ridges - 1: Synoptic observations based on satellite altimetry data[J]. Journal of Geophysical Research-Solid Earth, 2002, 107 (B5): 2 098.
  • 10[19]Goff J A, Cochran J R. The Bauer scarp ridge jump: A complex tectonic sequence revealed in satellite altimetry[J]. Earth and Planetary Science Letters, 1996, 141 (1-4): 21-33.

共引文献19

同被引文献20

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部