摘要
文中分析了贵州省茶叶产业及茶叶物流现状,通过对贵州省茶叶物流需求的影响因素的分析,选择分析指标并利用近几年的数据对各因素进行了相关性分析。在此基础上主要借助指数平滑模型、GM(1. 1)模型、主成分回归模型、BP神经网络法来构建贵州省茶叶物流需求预测模型,分析几种预测方法的预测结果并得出相应结论。
This article analyzes the current situation of tea industry and tea logistics in Guizhou Province.Through the analysis of the influencing factors of tea logistics demand in Guizhou province,the analysis indicators are selected and the correlations between the factors are analyzed using data from recent years.On this basis,the index model of tea logistics demand in Guizhou Province was constructed by means of exponential smoothing model,GM (1.1) model,principal component regression model and BP neural network method.The prediction results of several forecasting methods were analyzed and the corresponding conclusions were obtained.
作者
薛亮
XUE Liang(Nanjing Forestry University,College of Automobile and Traffic Engineering,Nanjing 210037,China)
出处
《物流工程与管理》
2019年第4期41-44,共4页
Logistics Engineering and Management
基金
江苏省高等学校自然科学研究项目(17KJB580008)~~
关键词
茶叶物流
需求预测
比较研究
tea logistics
demand forecasting
comparative study