期刊文献+

基于极化域波达因子的飞行器群内近距定位

Intra-group short-range location of aircraft based on polarization steering factor
下载PDF
导出
摘要 研究飞行器群内近距定位,可改善飞行器群生存能力,飞行器群载电磁矢量传感器位置误差等因素造成了群内定位困难,根据机载缺损电磁矢量传感器姿态位置与接收信号之间的变化规律,建立飞行器群载传感器阵列全孔径导向矢量。根据信号时间、极化和空域相位延迟三维数据结构关系,采用盲信号极化状态等参数的极化域波达因子探测法,保留传感器在机身中安装姿态和位置信息,计算电磁波空间谱,汇聚目标信息,实现飞行器群对短距多目标定位。对飞行器位置误差不敏感,解决短距目标极化参数随接收位置变化、交叉极化、增益/相位漂移和接收机位置误差问题。仿真试验表明该算法有效。 The research of intra-group short-range positioning can improve the survivability of the aircraft group. Some factors, such as the position error of the electromagnetic vector sensor on the aircrafts, make it difficult to measure position of aircraft. Signal steering vector of polarizing array borne on a group of unmanned aerial vehicles (UAV) is set up according to sense attitude and position. According to the three-dimensional data structure relationship of signal time, polarization and spatial phase delay, polarizing direction of arrival (DOA) factor algorithm is adopted to retain the attitude and position information of sensors installed in the fuselage, calculate the electromagnetic wave spatial spectrum, and aggregate the target information. The short-range multi-target location of aircraft group is realized. It solves the problem of polarization parameters of short-range signal vary with receiving position, cross polarization, the inaccuracy of the UAV position measurement and gain/phase drift. Simulation results show that the algorithm is effective.
作者 陈广东 黄雨泽 王媛 CHEN Guangdong;HUANG Yuze;WANG Yuan(Research Institute of Unmanned Aircraft, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2019年第5期958-963,共6页 Systems Engineering and Electronics
关键词 电磁矢量传感器 极化状态 波达方向 位置误差 electromagnetic vector sensor (EVS) state of polarization direction of arrival (DOA) position errors
  • 相关文献

参考文献4

二级参考文献38

  • 1徐友根,刘志文.基于累积量的极化敏感阵列信号DOA和极化参数的同时估计[J].电子学报,2004,32(12):1962-1966. 被引量:12
  • 2Krim H, Viberg M. Two decades of array signal processing research:the parametric approach[ J ]. IEEE Signal Process- ing Magazine, 1996,13 (4) : 67 - 94.
  • 3Schmit R O. Multiple emitter location and signal parameter estimation[ J]. IEEE Transactions on Antennas and Propa- gation, 1986,34( 3 ) :276 - 280.
  • 4Wang Q, Wang L, An K, et al. DOA estimation of smart antenna signal based on MUSIC algorithm [ J ]. Journal of Networks,2014,9(5) :1309 - 1316.
  • 5Roy R, Kailath T. ESPRIT-a subspace rotation approach to estimation of parameters of cissoids in noise [ J ]. IEEE Transactions on Acoustic, Speech and Signal Processing, 1986,34(10) :1340 - 1342.
  • 6Ma Y, Chen B, Yang M, et al. A novel ESPRIT-based algo- rithm for DOA estimation with distributed subarray antenna [ J ]. Circuits, Systems, and Signal Processing, 2015, 34 (9) :1 -22.
  • 7Huang Y D, Barkat M. Near-field multiple source localiza- tion by passive sensor array [ J ]. IEEE Transaction on An- tennas and Propagation, 1991,39 (7) :968 - 975.
  • 8Yuen N, Friedlander B. Performance analysis of high order ESPRIT for localization of near-field sources I J ]. IEEE Transactions on Signal Processing, 1998, 46 ( 3 ) : 709 -719.
  • 9Starer D, Nehorai A. Passive localization of near-field sources by path following[ J]. IEEE Transactions on Sig- nal Processing, 1994,42 (2) : 677 - 680.
  • 10Grosicki E, Abed M K, Hua A. A weighted linear predic- tion method for near-field source localization[ J ]. IEEE Transactions on Signal Processing, 2005,53 ( 10 ) : 3651 - 3660.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部