期刊文献+

红外高光谱数据鉴别技术研究 被引量:2

Research on Infrared Hyperspectral Data Identification Technology
下载PDF
导出
摘要 针对红外高光谱数据目标鉴别问题,根据目标光谱特点,采用均匀区域法进行噪声评估、PCA和LDA算法进行数据降维与特征提取、光谱间最小距离匹配算法进行数据分类这三个步骤,对高光谱数据进行分析处理。重点对PCA/ICA/LDA算法及LDA算法的性能进行了分析对比,实现了不同目标的红外光谱鉴别。根据对比结果可以看出,LDA算法在光谱数据特征分离方面,与PCA和ICA两个算法对比具有较好的效果。 According to the problem of infrared hyperspectral data identification and the characteristics of target spectrum, hyperspectral data are analyzed and processed through three steps, first to noise estimation by homogeneous area method, second to data dimension reduction and feature extraction by principal component analysis (PCA) and linear discriminant analysis (LDA) algorithms and third to data classification by spectral minimum distance matching algorithm. The characteristics of PCA, independent component analysis (ICA) and LDA algorithms are compared and analyzed to realize infrared spectrum identification of different targets. Compared results show that LDA algorithm has better effect on spectral data characteristic separation comparing with that of PCA and ICA algorithms.
作者 张晟翀 李宇海 ZHANG Sheng-chong;LI Yu-hai(Science and Technology on Electro-Optical Information Security Control Laboratory, Tianjin 300308, China)
出处 《光电技术应用》 2019年第2期27-33,共7页 Electro-Optic Technology Application
关键词 红外高光谱 高光谱鉴别 降维与特征提取 PCA LDA infrared hyperspectral hyperspectral data identification dimension reduction and feature extrac tion principal component analysis (PCA) linear discriminant analysis (LDA)
  • 相关文献

参考文献3

二级参考文献38

共引文献25

同被引文献20

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部