摘要
该文将已有的Roper-Suffridge延拓算子在Bergman-Hartogs域上进行了推广,应用α次β型螺形映照及复数λ阶殆星映照的几何性质及增长定理,讨论了推广后的RoperSuffridge延拓算子在Bergman-Hartogs域上保持α次β型螺形性及复数λ阶殆星性,并得到一些特殊情况.所得结论为构造多复空间中的α次β型螺形映照及复数λ阶殆星映照提供了新的途径.
In this paper, we generalize the Roper-Suffridge operator on Bergman-Hartogs domains. Applying the geometric properties and the growth theorems of spirallike mappings of type β and order α as well as almost starlike mappings of complex order λ, we obtain that the generalized Roper-Suffridge operators preserve spirallikeness of type β and order α as well as almost starlikeness of complex order λ on Bergman-Hartogs domains which lead to some special cases. The conclusions provide new approaches to construct spirallike mappings of type β and order α and almost starlike mappings of complex order λ in several complex variables.
作者
王朝君
崔艳艳
刘浩
Chaojun Wang;Yanyan Cui;Hao Liu(College of Mathematics and Statistics, Zhoukou Normal University, Henan Zhoukou 466001;Institute of Contemporary Mathematics, Henan University, Henan Kaifeng 475001)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2019年第2期209-219,共11页
Acta Mathematica Scientia
基金
国家自然科学基金(11271359
11471098)
河南省教育厅科学技术研究重点项目(17A110041
19B110016)
周口师范学院科研创新基金项目(ZKNUA201805)~~