期刊文献+

含参数拟线性非齐次椭圆型方程的多重解

Multiple Solutions for Quasilinear Nonhomogeneous Elliptic Equations with a Parameter
下载PDF
导出
摘要 该文研究如下形式的拟线性非齐次椭圆型方程-△_pu-△_p(|u|^(2α))|u|^(2α-2)u+V(x)|u|^(p-2)u=h(u)+g(x), x∈R^N,其中1 <p≤N (N≥3),1/2 <α≤1,V∈C(R^N,R), h∈C(R,R),而且扰动项g∈L^p'(R^N),这里p'=p/(p-1).利用变量代换结合极小极大方法可以证明该问题存在多重解. In this paper, we study the following quasilinear nonhomogeneous elliptic equations of the form -△pu-△p(|u|^2α)|u|^2α-2u+V(x)|u|^p-2u=h(u)+g(x), x∈R^N, where 1<p≤N(N≥3), 1/2<α≤1, V∈C(RN,R), h∈C(R,R) and g∈L^p′(R^N), where p′=p/p-1, is a disturbance term. Using a variable replacement and minimax method, we show the existence and multiplicity of solutions to this problem.
作者 宋洪雪 魏云峰 Hongxue Song;Yunfeng Wei(School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023;College of Science, Hohai University, Nanjing 210098;School of Statistics and Mathematics, Nanjing Audit University, Nanjing 211815)
出处 《数学物理学报(A辑)》 CSCD 北大核心 2019年第2期286-296,共11页 Acta Mathematica Scientia
基金 国家自然科学基金(61503198) 中国博士后科学基金面上项目(2017M611664) 南京邮电大学校级科研基金(NY217092 NY218076)~~
关键词 拟线性椭圆型方程 EKELAND变分原理 P-S序列 Quasilinear elliptic equations Ekeland's variational principle Palais-Smale sequences
  • 相关文献

参考文献4

二级参考文献31

  • 1Borovskii A V,Galkin A L.Dynamical modulation of an ultrashort high-intensity laser pulse in matter. JETP,1993,77:562-573.
  • 2Aouaoui S.Multiplicity of solutions for quasilinear elliptic equations in Rn.J Math Anal Appl,2010,370:639-648.
  • 3Bartsch T,Pankov A,Wang Z Q.Nonlinear Schrodinger equations with steep potential well.Comm Con- temp Math,2001,4:549-569.
  • 4do O J M,Severo U.Quasilinear Schrodinger equations involving concave and convex nonlinearities.Comm Pure Appl Anal,2009,8:621-644.
  • 5Canino A,Degiovanni M.Nonsmooth critical point theory and quasilinear elliptic equations//Granas A, Frigon M,Sabidussi G,eds.Topological Methods in Differential Equations and Inclusions,Montreal,1994, NATO ASI Series.Dordrecht:Kluwer Academic Publishers,1995:I一50.
  • 6Corvellec J N,Degiovanni M,Marzocchi M.Deformation properties for continuous functionals and critical point theory.Topol Methods Nonl Anal,1993,I:151-171.
  • 7Degiovanni M,Marzocchi M.A critical point theory for nonsmooth functional.Ann Mat Pura Appl,1994,167(4):73-100.
  • 8Arcoya D,Boccardo L.Critical points for multiple integrals of the calculus of variations.Arch Rational Meth Anal,1996,134:249-274.
  • 9Arcoya D,Boccardo L,Orsina L.Existence of critical points for some noncoercive functionals.Ann I H Poincare-ANj 2001,18(4):437-457.
  • 10Arioli G,Gazzola F.Quasilinear elliptic equations at critical growth.NoDEA Nonl Eiffer Equ Appl,1998,5:83-97.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部