摘要
为评价两熟制条件下实施保护性耕作的可行性,探明鲁西南潮褐土合理耕层构建的最佳耕作方式,提高玉米产量,设置田间定位试验,研究免耕、常规旋耕、深松三种耕翻及不同秸秆处理方式组合对土壤物理性状及玉米产量形成的影响。结果表明:"深松+秸秆还田"耕作模式的松土保墒和玉米增产效果最好。与秸秆不还田处理下免耕和常规旋耕相比,秸秆还田条件下深松处理在20~30、30~40 cm土壤容重平均下降11.3%、10.6%和7.6%、8.0%,玉米全生育期的土壤含水量提高8.1%~10.3%,土壤田间持水量增加3.6%~6.1%。秸秆还田配合深松处理下玉米穗长、穗粒数、千粒重等产量构成因素均有不同程度的改善,产量较秸秆不还田下免耕处理增产13.6%。因此,"秸秆还田+深松"耕作模式可作为本地区构建合理耕层结构、充分挖掘耕层潜力、提高玉米产量的推广技术。
The purpose of this experiment was to evaluate the feasibility of conservation tillage under double cropping system and identify the best cultivation method for building a reasonable soil structure and improving corn yield in cinnamon soil of the southwest of Shandong Province. The located field experiment was carried out to study the effects of no-tillage, conventional rotary tillage and deep scarification and different straw retention modes on the physical properties of cinnamon soil and the formation of corn yield. The results showed that the farming mode of subsoiling and straw returning was the most optimal to enhancing soil quality and corn yield. Compared with rotary tillage and no-tillage under no-straw returning, the soil bulk density in the 20~30- and 30~40-cm soil layers under subsoiling and straw returning treatment decreased averagely by 11.3%, 10.6% and 7.6%, 8.0% respectively. The soil moisture content and soil water storage capacity increased by 8.1%~10.3% and 3.6%~6.1% respectively in the whole corn growth period. In addition, corn yield components, such as ear length,kernels per spike and 1 000-grain weight were improved at different degrees after subsoiling and straw returning treatment. And the corn yield was 13.6% higher compared with no-tillage with no straw returning treatment. It was concluded that subsoiling and straw returning could provide a new and effective way to build rational plough layer construction, fully excavate plough layer potential and increase crop yield in the region.
作者
韩成卫
孔晓民
郝福庭
宋春林
吴秋平
孙泽强
Han Chengwei;Kong Xiaomin;Hao Futing;Song Chunlin;Wu Qiuping;Sun Zeqiang(Jining Academy of Agricultural Sciences/Jining Comprehensive Experimental Station of National Corn Industry Technology System,Jining 272031,China;Institute of Agricultural Resources and Environment,Shandong Academy of Agricultural Sciences/Shandong Farmland Conservation Science Observation and Experiment Station,Ministry of Agriculture and Rural Affairs,Jinan 250100,China)
出处
《山东农业科学》
2019年第4期100-104,共5页
Shandong Agricultural Sciences
基金
公益性行业(农业)科研专项(201503117)
国家重点研发计划项目(2017YFD0200701)
关键词
耕作方式
秸秆还田
土壤物理性状
玉米产量
Tillage methods
Straw returning
Soil physical properties
Corn yield