期刊文献+

作为同态与反同态的广义(θ,θ)-导子的研究 被引量:3

The Research of Generalized(θ,θ)-derivation as Homomorphism and Anti-homomorphism
下载PDF
导出
摘要 R是2-扭自由素环,I是R上的非零理想,θ是R上的自同构,F是R上的与(θ,θ)-导子d有关的非零广义(θ,θ)-导子,有F(xy)=F(x)F(y)或F(xy)=F(y)F(x),对所有的x,y属于I且d≠0,则R是可交换的. The concept of(θ,θ)-derivations as well as generalized(θ,θ)-derivations have been generalized as an additive function F:R→R satisfying F(xy)=F(x)θ(y)+θ(x)d(y)for all x,y∈R,where d is a nonzero(θ,θ)-derivation on R.Such a function F is said to be a generalized(θ,θ)-derivation.In the present paper it is shown that:If R is 2-torsion free prime ring,I≠0 an ideal of R and F is a generalized(θ,θ)-derivation of R such that either F(xy)=F(x)F(y)or F(xy)=F(y)F(x)for all x,y∈I,then R is commutative.
作者 许莹 XU Ying(School of Mathematics,Jilin Normal University,Changchun Jilin,130000,China)
出处 《佳木斯大学学报(自然科学版)》 CAS 2019年第2期324-325,共2页 Journal of Jiamusi University:Natural Science Edition
关键词 素环 理想 广义(θ θ)-导子 prime ring ideal generalized(θ,θ)-derivation
  • 相关文献

参考文献3

二级参考文献25

  • 1Ashraf M., Ali A., Ali S., On Lie ideals and generalized (9, ^-derivations in prime rings, Comm. Algebra,2004, 32(8): 2977-2985.
  • 2Bars I., Giinaydin M., Construction of Lie algebras and Lie superalgebras from ternary algebras, J. Math. Phys., 1979, 20(9): 1977-1993.
  • 3Benito P., Madariaga S., Perez-Izquierdo J. M., Weyl’s dimension formula for modules of simple inner Lie triple systems, J. Algebra, 2012, 359: 104-119.
  • 4Benoist Y., La partie semi-simple de L’algebre Des derivations d’une algebre de Lie nilpotente (in French), C. R. Acad. Sci. Paris Ser. I Math., 1988, 307(18): 901-904.
  • 5Bresar M., Vukman J., Jordan (O, ^-derivations, Glas. Mat. Ser. Ill, 1991, 26(46)(l-2): 13-17.
  • 6Calderon Martin A. J., Draper Fontanals C., Martin Gonzalez C., Gradings on Lie triple systems related to exceptional Lie algebras, J. Pure Appl. Algebra, 2013, 217(4): 672-688.
  • 7Chen L. Y., Ma Y., Ni L., Generalized derivations of Lie color algebras, Results Math., 2013, 63(3-4): 923-936.
  • 8Herstein I. N., Topics in Ring Theory, The University of Chicago Press, Chicago, 1969.
  • 9Jacobson N., Lie and Jordan triple systems, Amer. J. Math., 1949, 71: 149-170.
  • 10Kac V. G., Lie superalgebras, Adv. Math., 1977, 26(1): 8-96.

共引文献16

同被引文献7

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部