摘要
R是2-扭自由素环,I是R上的非零理想,θ是R上的自同构,F是R上的与(θ,θ)-导子d有关的非零广义(θ,θ)-导子,有F(xy)=F(x)F(y)或F(xy)=F(y)F(x),对所有的x,y属于I且d≠0,则R是可交换的.
The concept of(θ,θ)-derivations as well as generalized(θ,θ)-derivations have been generalized as an additive function F:R→R satisfying F(xy)=F(x)θ(y)+θ(x)d(y)for all x,y∈R,where d is a nonzero(θ,θ)-derivation on R.Such a function F is said to be a generalized(θ,θ)-derivation.In the present paper it is shown that:If R is 2-torsion free prime ring,I≠0 an ideal of R and F is a generalized(θ,θ)-derivation of R such that either F(xy)=F(x)F(y)or F(xy)=F(y)F(x)for all x,y∈I,then R is commutative.
作者
许莹
XU Ying(School of Mathematics,Jilin Normal University,Changchun Jilin,130000,China)
出处
《佳木斯大学学报(自然科学版)》
CAS
2019年第2期324-325,共2页
Journal of Jiamusi University:Natural Science Edition
关键词
素环
理想
广义(θ
θ)-导子
prime ring
ideal
generalized(θ,θ)-derivation