期刊文献+

随机时滞Lotka-Volterra模型解的渐近估计

Asymptotic Estimation of Solutions for Stochastic Delay Lotka-Volterra Model
下载PDF
导出
摘要 研究一类随机时滞Lotka-Volterra生态模型解的动力行为。利用■公式,Borel-Cantelli引理及指数鞅不等式,得到模型全局正解的时间均值有界性和渐近估计. This paper is concerned with a stochastic delay Lotka-Volterra model.By using of Ito formula,Borel-Cantellil lemma and exponential martingale inequality,moment average in time and asymptotic pathwise estimation of solutions are investigated.
作者 干有雨 吴正 GAN You-yu;WU Zheng(School of Mathematical Sciences,Anhui University,Hefei Anhui 230601,China)
出处 《佳木斯大学学报(自然科学版)》 CAS 2019年第2期331-334,共4页 Journal of Jiamusi University:Natural Science Edition
基金 国家自然科学基金(11301004) 安徽省高等教育质量工程计划教学研究项目(2015jyxm057) 安徽大学大学生科研训练项目(KYXL2016001) 安徽大学本科质量提升计划项目(ZLTS2015052)
关键词 LOTKA-VOLTERRA模型 随机微分方程 布朗运动 ITO公式 Lotka-Volterra model stochastic differential equation brownian motion Ito formula
  • 相关文献

参考文献1

二级参考文献9

  • 1Ahmad A,Rao M R M. Asymptotically Periodic Solutions of n-competing Species Problem with Time Delay [J]. JMath Anal Appl,1994,186:557-571.
  • 2Bereketoglu H, Gyori I. Global Asymptotic Stability in a Nonautonomous Lotka-Volterra Type System with InfiniteDelay [J], J Math Anal Appl,1997,210:279-291.
  • 3Freedman H I,Ruan S. Uniform Persistence in Functional Differential Equations [J]. Journal of Differential Equations,1995,115:173-192.
  • 4Kuang Y. Delay Differential Equations with Applications in Population Dynamics [M], Boston: Academic Press,1993;50-56.
  • 5Mao X,Marion G, Renshaw E. Environmental Noise Suppresses Explosion in Population Dynamics [J]. StochasticProcess AppU 2002,97:95-110.
  • 6Wu Zheng, Huang Hao,Wang Lianglong. Dynamical Behavior of a Stochastic Ratio-dependent Predator-prey System[J]. Journal of Applied Mathematics ,2012, Article ID 857134.
  • 7Wu Zheng, Huang Hao, Wang Lianglong. Stochastic Delay Logistic Model With Markovian Switching [ J ].International Journal of Information and Systems Sciences,2012,8(2) : 174-180.
  • 8Bahar A, Mao X. Stochastic Delay Lotka-Volterra Model [J]. J Math Anal Appl, 2004,292 : 364-380.
  • 9Higham D J. An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations [J]. SIAMRev,2001,43:525-546.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部