期刊文献+

DCN模型在电商广告转化率预估中的应用 被引量:1

下载PDF
导出
摘要 广告转化率(CVR)是广告投放效果的重要指标。目前转化率预估模型对数据稀疏和类别分布不均衡的电商广告数据学习能力有限。针对上述问题,本文提出了DCN模型+数据融合的方法,解决数据稀疏以及繁杂人工特征工程问题。使用大数据集群资源,数据分布式计算,加快模型训练速度。最后,通过单模型实验、采样实验以及数据融合实验,验证了DCN+数据融合对预估准确率有明显提升。
作者 王晓阳 刘峰
出处 《电子技术与软件工程》 2019年第9期179-181,共3页 ELECTRONIC TECHNOLOGY & SOFTWARE ENGINEERING
  • 相关文献

参考文献2

二级参考文献73

  • 1Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 2Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 3Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 4Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 5Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 6Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 7Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 8Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 9Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.
  • 10Schafer JB, Konstan J, Riedl J. Recommender systems in e-commerce. In: Proc. of the 1 st ACM Conf. on Electronic Commerce. New York: ACM Press, 1999. 158-166.

共引文献544

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部