期刊文献+

面向一类混合退化装备RUL预测的平行仿真技术 被引量:5

RUL Prediction Oriented Parallel Simulation Technology for Hybrid Degradation Equipment
下载PDF
导出
摘要 针对一类带离散冲击的混合退化装备剩余寿命预测问题,研究了面向混合退化装备剩余寿命预测的平行仿真技术.提出以混合Wiener状态空间模型为基础仿真模型,以泊松冲击到达为模型选择判据,在实时退化数据驱动下,实现仿真模型在线选择,利用强跟踪滤波和期望最大化算法进行仿真模型数据同化和未知参数在线估计,从而实现仿真模型演化,提高仿真模型逼真度.在此基础上,实现了基于平行仿真的剩余寿命实时预测.利用某轴承性能退化数据对平行仿真方法进行了实例验证,仿真结果表明平行仿真方法能有效仿真轴承的性能退化过程,剩余寿命预测的不确定性小、精度高. Aiming at the remaining useful life (RUL) prediction issue of hybrid degradation equipment with discrete shock, a parallel simulation technology was studied to predict the RUL of hybrid degradation equipments. Firstly, a simulation model was proposed based on a hybrid Wiener state space model, taking the arrival of Poisson shock as the selection criteria of the model. Driven by the real-time degradation data, the online simulation model selection was carried out, realizing the data assimilation of simulation model and online estimation of unknown parameter with a strong tracking filter and expectation maximum algorithm. And it was accomplished to evolve the model and improve the fidelity of simulation model. As a result, the parallel simulation based real-time prediction of RUL was realized. Then, utilizing the degradation data of a bearing, the proposed method was verified. The simulation results show that the parallel simulation method can simulate the performance degradation process effectively, and can predict the RUL with less uncertainty and high accuracy.
作者 葛承垄 朱元昌 邸彦强 孟宪国 GE Cheng-long;ZHU Yuan-chang;DI Yan-qiang;MENG Xian-guo(Shijiazhuang Campus, Army Engineering College, Shijiazhuang,Hebei 050003, China)
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2019年第4期399-405,共7页 Transactions of Beijing Institute of Technology
基金 国家部委预研基金重点资助项目(9140A04020115JB34011)
关键词 平行仿真 模型演化 剩余寿命 模型选择 混合退化 parallel simulation model evolution remaining useful life model selection hybrid degradation
  • 相关文献

参考文献2

二级参考文献32

  • 1王飞跃.人工社会、计算实验、平行系统——关于复杂社会经济系统计算研究的讨论[J].复杂系统与复杂性科学,2004,1(4):25-35. 被引量:236
  • 2Xing Y, Ma E, Tsui K, et al. Battery management systems in electric and hybrid vehicles[J]. Energies, 2011,4(11) :1840 - 1857.
  • 3Schmidt A, Bitzer M, Imre A, et al. Model-based distinction and quantification of capacity loss and rate capability fade in li-ion batteries [J]. J Power Sources, 2010,195:7634 - 7638.
  • 4Vetter J, Novak P, Wagner M. Aging mechanisms in lithium-ion batteries[J]. J Power Sources, 2009,147 269 - 281.
  • 5Zhang J, Lee J. A review on prognostics and health mo- nitoring of li-ion battery[J]. J Power Sources, 2011, 196 .. 6007 - 6014.
  • 6Kazuhiko T, Masahiro I, Kazuo T, et al. Quick testing of batteries in lithium-ion battery packs with impedance- measuring technology[J]. J Power Sources, 2004,128: 67 - 75.
  • 7Jungst R, Nagasubramanian G, Case H, et al. Accelerated calendar and pulse life analysis of lithium- ion cells[J]. J Power Sources, 2003,119(1) ..870 -873.
  • 8He W, Williard N, Osterman M, et al. Prognostics of lithium-ion batteries based on dempster-shafer theory and the bayesian monte carlo method [J]. J Power Sources, 2011,19610314 - 10321.
  • 9Saha B, Goebel K, Poll S, et al. Prognostics methods for battery health monitoring using a Bayesian framework[J]. IEEE Transactions on Instrumentation and Measurement, 2009,58(2) ..291 - 296.
  • 10Gordon N, Salmond D J, Smith A F M. Novel approach to nonlinear/nomgaussian bayesian state estimation[C] // Proceedings of lEE Proceedings-Radar, Sonar I Navigation. [S. 1.1.- IET Digital Library, 1993, 140(2) :107 - 113.

共引文献25

同被引文献51

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部