期刊文献+

风机叶片故障预测的振动方法研究

Research on Vibration Method for Fan Blade Failure Prediction
下载PDF
导出
摘要 随着时代的发展,科学技术的发展,所有相关的领域都有了许多的进步和发展,以往许多的问题,也随着科学技术的不断发展,开始有了解决的方法,在科学技术不断发展的现在,我们已经有了很多的相关技术,来针对以往无法解决的还对整个领域造成极大的负面影响的问题。风机叶片故障预测的振动方法就是其中之一,风叶的使用十分广泛,在家用的风扇,相关鼓风机,工业的吹风机,风源发动机等等,都会使用到风叶。而风叶由于内部体积较小,不容易发现问题,导致问题发生的时候,整个风机叶片所产生的故障就很难修复了,所以需要定期对风机叶片进行维修,随着科学技术的发展,这类问题随着振动方法的使用已经逐渐得到解决。本文主要阐释了风机叶片故障的问题,以及振动方法在预测风机叶片故障中的使用。 With the development of the times, the development of science and technology, all relevant fields have made a lot of progress and development. Many problems in the past, along with the continuous development of science and technology, began to have a solution in science. Now that technology is constantly evolving, we already have a lot of related technologies to solve the problem that has not been solved in the past and has a great negative impact on the entire field. One of them is the vibration method for predicting wind turbine blade failure. The fan blades are widely used. Fans for household fans, related blowers, industrial hair dryers, wind source engines, etc., are used. Because the internal volume of the wind blade is small, it is not easy to find the problem. When the problem occurs, the fault caused by the entire fan blade is difficult to repair, so it is necessary to regularly repair the fan blade. With the development of science and technology, this Class problems have gradually been resolved with the use of vibration methods. This paper mainly explains the problem of fan blade failure and the use of vibration method in predicting fan blade failure.
作者 巴根那 Ba Gen-na
出处 《电力系统装备》 2019年第7期96-97,共2页 Electric Power System Equipment
关键词 风机叶片 故障预测 振动方法 问题 研究 wind turbine blade fault prediction vibration method problem research
  • 相关文献

参考文献2

二级参考文献16

  • 1殷勤业,倪志芳,钱世锷,陈大庞.自适应旋转投影分解法[J].电子学报,1997,25(4):52-58. 被引量:40
  • 2铁道部科学研究院建筑研究所.振动测试和分析[M].,1979.357-358.
  • 3[1]L.Cohen.Time-frequency distribution-a review[J],Proc.IEEE.1989,77:941-981.
  • 4[2]L.Cohen.Time-Frequency Analysis[M].PrenticeHall,Englewood Cliffs,NJ,1995.
  • 5[3]G B Folland.Harmonic analysis in Phase Space[M].Princeton,NJ:Princeton Univ.Press,1989.
  • 6[4]S.Qian,D.Chen.Signal representation in adaptive Gaussian functions and adaptive spectrogram[C],in Proc.Twenty-Seventh Annu.Conf.Inform.Sci.Syst..Baltimore,MD,Mar.1993:59-65.
  • 7[5]S.Qian and D.Chen,Signal representation using adaptive normalized Gaussian functions[J],Signal Process.,1994,36(1):1-11.
  • 8[6]S.Mallat and Z.Zhang,Matching pursuit with timefrequency dictionaries[J],IEEE Trans.Signal Processing,1993,41:3397-3415.
  • 9[8]Qian Shie,Chen Dapang,Yin Qinye.Adaptive Chirplet Based Signal Approximation[J].IEEE Trans on Acoustics Speech and Signal Processing,1998,3(5):1781-1784.
  • 10[10]Q.Yin,S.Qian,and A.Feng,A fast refinement for adaptive Gaussian chirplet decomposi-tion[J],IEEE Trans.Signal Processing,2002,50(6):1298-1306.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部