期刊文献+

就读重点大学对人工智能就业替代压力的缓解作用 被引量:24

The Role of Elite College Education in Alleviating the Substitution Pressure of Artificial Intelligence Employment
原文传递
导出
摘要 随着人工智能的高速发展,劳动力市场的许多岗位存在被替代的风险。文章基于2017年全国高校毕业生就业状况调查数据,考察就读重点大学对人工智能的就业替代压力的缓解作用。研究结果显示,与非重点大学相比,重点大学毕业生能进入就业替代率更低的行业,说明就读重点大学能缓解人工智能的就业替代压力。这些结论在控制样本选择偏差和解决内生性问题后依然成立。对其影响机制的进一步研究发现,重点大学主要通过提升学生的专业技能和引导学生形成良好的人格特征,帮助他们进入就业替代率更低的行业,降低被人工智能替代的风险。此外,缓解作用在不同专业背景和职业类型上具有异质性,对于人文社科、理工科学生及从事非常规知识型工作的学生而言效果最为明显。 With rapid development of Artificial Intelligence(AI),many jobs in the labor market are at risk of being substituted.Using data from the National Employment Survey of College Graduates in 2017,this paper analyzes the impact of graduating from elite colleges in alleviating the risk of AI employment substitution.The results show that,compared with those from non-elite colleges,graduates from elite colleges enter industries with lower substitution risks,suggesting a protective effect of graduating from elite colleges.These conclusions remain valid after controlling for the sample selection bias and eliminating endogeneity.It also points out that the mechanism is mainly by upgrading their professional skills and developing favorable personalities,which help to reduce the risk of being substituted by AI.In addition,it evaluates the heterogeneity of the mitigation effect among different professional backgrounds and occupational groups.The effect is most salient for students of Humanities and Social Sciences,Engineering and those engaged in non-routine cognitive occupations.
作者 岳昌君 张沛康 林涵倩 Yue Changjun
出处 《中国人口科学》 CSSCI 北大核心 2019年第2期2-15,126,共15页 Chinese Journal of Population Science
基金 国家自然科学基金面上项目"高校毕业生就业分布研究"(批准号:71473007)的阶段性成果
  • 相关文献

参考文献5

二级参考文献36

  • 1范静波.高等教育生源质量与教育质量对个人收入的影响——兼论教育的生产与信号功能[J].教育科学,2013,29(3):71-75. 被引量:10
  • 2任兆璋,范闽.中国教育质量与收益率的微观计量分析[J].华南理工大学学报(自然科学版),2005,33(9):91-96. 被引量:9
  • 3乔锦忠.优质高等教育入学机会分布的区域差异[J].北京师范大学学报(社会科学版),2007(1):23-28. 被引量:56
  • 4Heckman J J, Robb R. Alternative Methods for Evaluating the Impact of Interventions [M]. New York: Cambridge Univ. Press, 1985 : 10,156-245.
  • 5ImbensG W,Wooldridge J M. Recent Developments in the Econometrics of Program Evaluation[J]. Journal of Economic Literature,2009,l(47);5-86.
  • 6HeckmanJ J,Vytlacil E J. Econometric Evaluation of Social Programs,Part II:Using the Marginal Treatment Effect to Organize AlternativeEconomic Estimators to Evaluate Social Programs and to Forecast Their Effects in New Environments[M]. Elsevier,2007:6B,4B75-5144.
  • 7CosslettS R. Distribution-free Maximum Likelihood Estimator of the Binary Choice Model[J]. Econometrica,1983,51 (3).
  • 8PowellJ L,Stock 3 H,Stoker T M. Semiparametric Estimation of Index Ccoefficients[J]. Econometrica,1989,57(6) :1403-1430.
  • 9Ichimura H. Semiparametric Least Squares(SLS) and Weighted SLS Estimation of Single-index Models [J]. Journal of Econometrics, 1993,58(1-2) ;71-120.
  • 10Heckman J J, Vytlacil E J. Structural Equations,Treatment Effects and Econometric Policy[J]. Econometrica. 2005,73(3) :669-738.

共引文献195

同被引文献269

引证文献24

二级引证文献318

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部