期刊文献+

一种基于神经网络模型的多检索词用户兴趣模型 被引量:1

A User Interest Model of Multiple Search Terms Based on Neural Network Model
下载PDF
导出
摘要 针对职业教育资源库建设平台(职教云)目前对用户个性化推荐需求日益迫切的问题,提出了一种基于个性化神经网络的多检索词用户兴趣模型。通过将用户输入多检索词转换为词向量的形式,并将待推荐文档通过Doc2vec也转换为文档向量,二者通过个性化神经网络模型的相应特性,从而深层次挖掘出多检索词与用户兴趣之间的隐式联系,得到个性化推荐结果。实验结果表明,该方法从推荐效果上能够取得较好地效果。 Aiming at the urgent need of personalized recommendation for users in the construction platform of vocational education resource bank (vocational education cloud), a multi-search term user interest model based on personalized neural network is proposed. By transforming user input multi-search words into word vectors and recommending documents into document vectors through Doc2vec, the implicit relationship between multi-search words and user interests can be deeply excavated through the corresponding characteristics of personalized neural network model, and personalized recommendation results can be obtained. The experimental results show that the proposed method can achieve better recommendation results.
作者 胡旷达 代飞 Hu Kuangda;Dai Fei(JiuJiang Vocational and Technical College, JiuJiang, Jiangxi, 332007)
出处 《九江职业技术学院学报》 2019年第1期18-20,14,共4页 Journal of Jiujiang Vocational and Technical College
关键词 神经网络 多检索词 用户兴趣 neural network multiple search terms user interest
  • 相关文献

参考文献9

二级参考文献164

  • 1梁邦勇,李涓子,王克宏.基于语义Web的网页推荐模型[J].清华大学学报(自然科学版),2004,44(9):1272-1276. 被引量:9
  • 2富羽鹏,张敏,马少平.企业与内联网信息检索方法概述[J].广西师范大学学报(自然科学版),2007,25(2):90-98. 被引量:5
  • 3Vagelis H,Nick K,Yannis P,et al.Keyword Proximity Search in XML Tree[J].IEEE Transactions on Knowledge and Data Engineering,2006,18(4):525-539.
  • 4Xu Yu,Papakonstantinou Y.Efficient Keyword Search for Smallest LCAs in XML Databases[C] //Proceedings of 2005 ACM International Conference on Special Interest Group on Management of Data.New York,USA:ACM Press,2005:529-538.
  • 5Liu Zhiyang,Chen Yi.Identifying Meaningful Return Information for XML Keyword Search[C] //Proceedings of 2007 ACM International Conference on Special Interest Group on Management of Data.New York,USA:ACM Press,2007:329-340.
  • 6Snasel V,Moravec P,Pokorny J.WordNet Ontology Based Model for Web Retrieval[C] //Proceedings of 2005 International Workshop on Challenges in Web Information Retrieval and Integration.[S.l.] :IEEE Computer Society,2005:220-225.
  • 7Cui Han,Wen Jirong,Nie Jianyun,et al.Probabilistic Query Expansion Using Query Logs[C] //Proceedings of the 11th International Conference on World Wide Web.New York,USA:ACM Press,2002:325-332.
  • 8Chirita P A,Firan C S,Nejdl W.Personalized Query Expansion for the Web[C] //Proceedings of the 30th International Conference on ACM Special Interest Group on Information Retrieval.New York,USA:ACM Press,2007:7-14.
  • 9Xu J,Croft W.Improving the Effectiveness of Information Retrieval with Local Context Analysis[J].ACM Transactions on Information Systems,2000,18(1):79-112.
  • 10Ricardo Y B,Berthier N R.Modern Information Retrieval[M].[S.l.] :Pearson Education Limited,1999:16-65.

共引文献341

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部