期刊文献+

基于机器视觉的动态环境下小尺寸轴检测系统 被引量:10

Small Size Axis Detection System in Dynamic Environment Based on Machine Vision
下载PDF
导出
摘要 为准确检测小尺寸轴的尺寸,建立了一种动态环境下基于机器视觉的小尺寸轴检测系统。该系统是采用工业相机、镜头以及平行光作为背景光源组成的机器视觉系统,经过图像预处理、查找表、图像二值化以及边缘特征提取等图像处理技术的处理,采用轮廓分析方法计算了轴的轴直径和槽直径,同时运用最小二乘法拟合轴心线来计算了轴和槽的同轴度误差,最后提出了一种动态环境下的轴尺寸计算方法和环境变化实时监控方法。实验结果表明,该系统检测结果稳定性强、检测精度高,完全满足实际生产应用的要求,具有良好的实用价值。 In order to accurately detect the size of the small size shaft, a small size axis detection system based on machine vision under dynamic environment is established. The system is a machine vision system composed of industrial camera, lens and parallel light as background light source. It is processed by image processing technology, such as image preprocessing, lookup table, binaryzation and edge feature extraction. It calculates the axis diameter and groove diameter by contour analysis,and calculates the coaxiality error of axles and grooves by using the least square method to fit the axis line. Finally, a method for calculating shaft size in dynamic environment and a real-time monitoring method for environmental changes are proposed. The experimental results show that the system has strong stability and high detection accuracy, which fully meets the requirements of production application and has good practical value.
作者 丁成波 刘蜜 刘超 DING Cheng-bo;LIU Mi;LIU Chao(Gui Zhou Space Appliance Co.,Ltd.,Guiyang 550009,China)
出处 《组合机床与自动化加工技术》 北大核心 2019年第4期78-80,85,共4页 Modular Machine Tool & Automatic Manufacturing Technique
基金 智能制造综合标准化与新模式应用项目(工信部连装[2016]213号-01)
关键词 小尺寸轴 尺寸检测 机器视觉 图像处理技术 最小二乘法 small size axis dimension detection machine vision image processing technology least square method
  • 相关文献

参考文献5

二级参考文献32

  • 1雷良育,周晓军,潘明清.基于机器视觉的轴承内外径尺寸检测系统[J].农业机械学报,2005,36(3):131-134. 被引量:41
  • 2叶宗茂.用三坐标测量机正确测量同轴度误差[J].工具技术,2007,41(3):77-80. 被引量:29
  • 3孙晋豪,杨燕翔.基于机器视觉的零部件尺寸测量[J].工业控制计算机,2007,20(7):3-4. 被引量:8
  • 4IMAQ Vision Concepts Manual Part Number 372916C-01,August 2004.
  • 5Cheng-Jin Du, Da-Wen Sun. Pizza sauce spread classification using colour vision and support vector machines [J]. Journal of Food Engineering (S0260-8774), 2005, 66(2): 137-145.
  • 6J Blasco, N Aleixos, E Molto. Machine Vision System for Automatic Quality Grading of Fruit [J]. Biosystems Engineering (S1537-5110), 2003, 85(4): 415-423.
  • 7D Earl Kline, Chris Surak, Philip A Araman. Automated hardwood lumber grading utilizing a multiple sensor machine vision technology [J]. Computers and Electronics in Agriculture (S0168-1699), 2003, 41(6): 139-155.
  • 8Rezaul K Begg, Marimuthu Palaniswami, Brendan Owen. Support Vector Machines for Automated Gait Classification [J]. IEEE Transactions on Biomedical Engineering (S0018-9294), 2005, 52(5): 828-838.
  • 9Amit David, Boaz Lerner. Support vector machine-based image classification for genetic syndrome diagnosis [J]. Pattern Recognition Letters (S0167 -8655), 2005, 26(8): 1029- 1038.
  • 10Yiqiang Zhan, Dinggang Shen. Design efficient support vector machine for fast classification [J]. Pattern Recognition (S0031-3203), 2005, 38(7): 157-161.

共引文献77

同被引文献85

引证文献10

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部