期刊文献+

印刷电路板式换热器的设计分析 被引量:11

Design Analysis of Printed Circuit Heat Exchanger
下载PDF
导出
摘要 为了对基于超临界二氧化碳燃气轮机余热利用循环的印刷电路板式换热器进行性能分析,提出了一种定热负荷下对印刷电路板式换热器的离散分析方法。该方法将印刷电路板式换热器看成由许多子换热单元组成的整体,利用MATLAB建模,并参考了美国国家标准与技术研究院的物性库。通过分析定热负荷下,不同冷热侧流速对印刷电路板式换热器性能的影响。结果表明:二氧化碳在临界点和近临界点附近的比热具有较大的变化。采用分段设计的方法可以避免换热器性能剧烈变化带来的问题。在相同的初始条件下,换热器局部效率随冷流体质量流量的增加而增大,但是平均对数温差随冷流体质量流量的增加而减小。因此,换热性能的提高是以热导率为代价的。为了提高超临界二氧化碳印刷电路板式换热器的性能与安全运行,必须仔细选择设计参数的工作范围。 In order to analyze the performance of printed circuit heat exchanger (PCHE) used in supercritical carbon dioxide cycle on heat recovery of gas turbine, a discrete analysis method for PCHE under constant heat load was proposed. In this method, the PCHE is regarded as a whole composed of many sub- heat exchangers, referring to the physical properties database of the National Institute of Standards and Technology by MATLAB. The differences between cold and hot side under constant heat load were analyzed. The results show that the specific heat of carbon dioxide varies greatly near the critical point. The segmented design method can avoid the problems caused by the changes in the performance of sub-heat exchangers. Under the same initial conditions, the local efficiency of the heat exchanger increases with the increase of cold side mass flow rate, but the mean logarithmic temperature differences decrease with the increase of cold side mass flow rate. Therefore, the improvement of heat transfer performance is at the cost of thermal conductivity. In order to improve the performance and safe operation of supercritical carbon dioxide PCHE, the working range of design parameters must be carefully selected.
作者 董爱华 DONG Ai-hua(China Central Academy Harbin Electric Corporation, Harbin 150028, China)
出处 《节能技术》 CAS 2019年第2期170-173,共4页 Energy Conservation Technology
关键词 印刷电路板式换热器 定热负荷 超临界二氧化碳 子换热单元 数值模拟 局部换热效率 printed circuit heat exchanger constant heat load supercritical carbon dioxide sub-heat exchangers numerical simulation local efficiency
  • 相关文献

参考文献4

二级参考文献53

  • 1E1-Wakil M M. Nuclear Energy Conversion[M]. Toronto: lntext Educational Publishers, 1971.
  • 2Samsun Kwok Sun TOM. The Feasibility of Using Supercritical Carbon Dioxide as a Coolant for the CANDU Reactor[D]. Master Thesis of University of British Columbia, 1975.
  • 3Hejzlar P, Dostai V, Driscoll M J, et al. Assessment of Gas Cooled Fast Reactor with lndirect Supercritical CO2 Cycle[J]. Nuclear Engineering and Technology(Special Issue on 1CAPP 05), 2006, 38(2): 109-118.
  • 4David C Wade. (Jptimizing "Economy of Scale for the STAR Energy Supply Architecture[C]. Miami: IAEA 2^nd CRP Meeting on Small Reactors without Onsite Refueling, 2007.
  • 5Dostal 71 Driscoll M J, Hejzlar P. A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors[R]. Advanced Nuclear Power Technology Program, MIT-ANP-TR- 100, 2004.
  • 6Edward J P, Steven A W, Milton E V, et al. Supercri- tical CO2 Direct Cycle Gas Fast Reactor (SC-GFR) Concept[R]. Sandia report, SAND2011-2525, 2011.
  • 7Petr V, Kolovratnik M. A Study on Application of a Closed Cycle CO2 Gas Turbine in Power Engineering [R]. Departmental report Z-523/97, Czech Technical niversity in Prague, Department of Fluid Dynamics and Power Engineering, Division of Power Engineering, 1997.
  • 8David E S. Lessons Learned from GEN 1 Carbon Dioxide Cooled Reactors[R]. INEEL/CON-04- 01526.2004.
  • 9Michael A P. Reactor Physics Design of Supercritical CO2-Cooled Fast Reactor [D]. Master Thesis of Massachusetts Institute of Technology, 2004.
  • 10Michael A P. Thermal Hydraulics Design of a 2400MWth Direct Supercritical CO2-Cooled Fast Reactor [D]. Ph.D Thesis of Massachusetts Institute of Technology, 2006.

共引文献130

同被引文献74

引证文献11

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部