期刊文献+

基于Stockwell变换的滚动轴承故障诊断方法 被引量:9

Fault Diagnosis Method for Rolling Bearing Based on Stockwell Transform
下载PDF
导出
摘要 针对滚动轴承产生磨损时振动信号表现出非平稳的特点,采用继承短时傅里叶变换和小波变换优良性质的Stockwell变换特征提取方法。为解决Stockwell变换后得到的二维矩阵阶数过高问题,采用奇异值分解方法对结果进行降维,并进一步矢量化,然后构成特征矩阵。将特征矩阵分别输出至多分类支持向量机、神经网络和近邻算法模型进行训练。对比测试结果,表明多分类支持向量机在准确率和识别速度上均有优势,从而证明基于Stockwell变换的滚动轴承故障诊断方法的有效性。 Aiming at the non-stationary vibration signal generated by the rolling bearing, the Stockwell transform feature extraction method inheriting STFT and wavelet transform with excellent properties was adopted. In order to solve the problem that the two-dimensional matrix order was too high after the Stockwell transform, the SVD method was used for dimensionality reduction and for vectorization in further step, and then the feature matrix was formed. The feature matrices are respectively output to a multi-classification SVM, neural network and neighbor algorithm model for training. By comparing the test results, it shows that the multi-classification SVM has advantages in accuracy and identification speed, which proves the effectiveness of the fault diagnosis method for rolling bearings based on Stockwell transform.
作者 许凯 许黎明 周大朝 辛庆伟 曹正捷 陈龙根 Xu Kai;Xu Liming;Zhou Dachao
出处 《机械制造》 2019年第4期92-96,共5页 Machinery
基金 国家科技重大专项(编号:2017ZX04016001)
关键词 滚动轴承 Stockwell变换 故障 诊断 Rolling Bearing Stockwell Transform Fault Diagnostics
  • 相关文献

参考文献8

二级参考文献57

共引文献86

同被引文献74

引证文献9

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部