期刊文献+

基于二维纹理重建三维人脸深度图像后的人脸识别 被引量:2

Face Recognition after Reconstructing 3D Face Depth Image Based on Two-Dimensional Texture
下载PDF
导出
摘要 利用二维纹理重建三维人脸深度图像,做到重建后的三维人脸深度图像可与人脸库中的三维模型深度图像进行特征提取比对识别。利用自编码网络将二维纹理映射重建为三维深度图,再利用卷积神经网络将二维人脸纹理图像映射的三维深度图与已有人脸库中的三维模型生成的深度图像分别提取特征进行对比识别。三维人脸深度图像对二维人脸纹理图像的异构异质识别率在100人的722组数据上达到75.21%的识别准确率。利用简单的卷积神经网络训练少量数据即可以达到不错的人脸识别准确率,表明基于二维纹理重建三维人脸深度图像后的人脸识别方法的可行性以及在数据增加和网络优化之后准确率存在极大地提升空间。 Reconstruction of 3D face depth images using 2D texture, the reconstructed 3D face depth image can be compared with the 3D model depth image in the face database for feature extraction and recognition. The self-coding network is used to reconstruct the 2D texture mapping into three-dimensional depth map. Then the convolution neural network is used to extract features from the three-dimensional depth map of two-dimensional face texture image mapping and the three-dimensional model generated in the existing face database. The heterogeneous recognition rate of 3D face depth image to 2D face texture image is 75.21% on 722 sets of data of 100 people. Using simple convolution neural network to train a small amount of data can achieve a good face recognition accuracy, which shows the feasibility of face recognition method based on two-dimensional texture reconstruction of 3D face depth image and the great improvement of accuracy after data increase and network optimization.
作者 李睿 李科 孙家炜 LI Rui;LI Ke;SUN Jia-wei(College of Computer Science, Sichuan University, Chengdu 610065;National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University, Chengdu 610065;Wisesoft Co. Ltd., Chengdu 610045)
出处 《现代计算机》 2019年第10期56-59,共4页 Modern Computer
基金 国家重点研发计划(No.2016YFC0801100)
关键词 二维纹理 三维人脸 深度学习 人脸识别 2D Texture 3D Face Deep Learning Face Recognition
  • 相关文献

参考文献5

二级参考文献140

  • 1柳杨.三维人脸识别算法综述[J].系统仿真学报,2006,18(z1):400-403. 被引量:7
  • 2张仲颖,范洪,袁保宗.在多Transputer系统上产生金字塔图象数据结构的并行算法及其实现[J].北方交通大学学报,1993,17(A08):16-158. 被引量:1
  • 3唐四春,袁保宗.基于拓扑图及三维特征的三维物体识别方法[J].北方交通大学学报,1993,17(A08):142-149. 被引量:1
  • 4李冯,姚莉秀,杨杰,戈新良.复杂背景下的彩色图像人脸检测[J].上海交通大学学报,2006,40(5):778-782. 被引量:7
  • 5Tenenbaum J B,Silva V de,Langford J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323.
  • 6Roweis S T,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
  • 7Rahimi A,Recht B,Darrell T.Learning to transform time series with a few examples[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(10):1759-1775.
  • 8Liang W,David S.Learning and matching of dynamic shape manifolds for human action recognition[J].IEEE Transactions on Image Processing,2007,16(6):1646-1661.
  • 9Hinton G E,Salakhutdinov R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507.
  • 10Zeng X H,Luo S W,Wang J.Auto-associative neural network system for recognition[C] //Proceedings of the Sixth International Conference on Machine Learning and Cybernetics.Hong Kong,China:[s.n.] ,2007:2885-2890.

共引文献286

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部