期刊文献+

基于IMCKD与谱负熵的滚动轴承故障诊断方法

Fault diagnosis method for rolling bearings based on IMCKD and spectral negentropy
下载PDF
导出
摘要 针对轴承故障成分常以周期性冲击成分出现在振动信号中,而冲击信号常被强大噪声淹没,导致轴承故障诊断难度较大的问题,提出一种基于改进的最大相关峭度解卷积(IMCKD)与谱负熵的故障特征提取方法。首先,采用改进的最大相关峭度解卷积以最大相关峭度为目标对原始振动信号进行降噪处理,检测信号中的周期性冲击成分;然后,以最大谱负熵值为准则寻找信号的最佳分析频段;最后,通过平方包络解调提取出轴承的故障特征。仿真和实测信号验证了该方法的有效性。 As components of bearing fault often appear in the vibration signal as periodic impulse components which are often submerged by strong noise, the extraction of periodic impulse can be very difficult. A new method is proposed to solve the problem based on improved maximum correlation kurtosis deconvolution (IMCKD) and spectral negentropy. Firstly, the IMCKD is used to denoise the original vibration signal with the maximum correlation kurtosis as the target. And then, the spectral negentropy is used as the criterion to find the best analysis frequency band. Finally, the fault feature of the bearing is extracted through the square envelope analysis. The validity of the method is verified by simulation and measured signals.
作者 朱丹宸 张永祥 赵磊 朱群伟 ZHU Dan-chen;ZHANG Yong-xiang;ZHAO Lei;ZHU Qun-wei(College of Power Engineering, Naval Univ. of Engineering, Wuhan 430033, China)
出处 《海军工程大学学报》 CAS 北大核心 2019年第2期106-112,共7页 Journal of Naval University of Engineering
关键词 改进的最大相关峭度解卷积 谱负熵 滚动轴承 故障诊断 IMCKD spectral negentropy rolling bearing fault diagnosis
  • 相关文献

参考文献2

二级参考文献21

  • 1罗忠辉,薛晓宁,王筱珍,吴百海,何真.小波变换及经验模式分解方法在电机轴承早期故障诊断中的应用[J].中国电机工程学报,2005,25(14):125-129. 被引量:67
  • 2Ming Y, Chen J, Dong G M. Weak fault feature extraction of rolling bearing based on cyclic Wiener filter and envelope spectrum[J]. LMechanical System and Signal Processing, 2011, 25(5): 1773-1785.
  • 3Jiang R L, Chen J, Dong G M, et al. The Weak fault diagnosis and condition monitoring of rolling element bearing using minimum entropy deconvolution and envelop spectrum[J]. Engineering Science Engineers, Part C: Journal of Mechanical Engineering Science, 2013, 227(5): 1116-1129.
  • 4Mcdonald G L, Zhao Q, Zuo M J. Maximum correlated kurtosis deconvolution and application on gear tooth chip fault detection[J]. Mechanical Systems and Signal Processing, 2012, 33: 237-255.
  • 5Kennedy J , Eberhart R C . Particle swarm optimization[C]//IEEE International Conference on Neural Networks, Perth, Australia, 1995: 1942-1948.
  • 6Su W S, Wang F T, Zhu H, et al. Rolling element bearing faults diagnosis based on optimal morlet wavelet filter and autocorrelation enhancement[J]. Mechanical System andSignal Processing, 2010, 24(5): 1458-1472.
  • 7Antoni J, Bonnardot F, Raad A, et al. Cyclostationary modeling of rotating machine vibration signals[J]. Mechanical Systems and Signal Processing, 2004, 18(6): 1285-1314.
  • 8Randall R B, Antoni J, Chobsaard S. The relationship between spectral correlation and envelope analysis in the diagnosis of bearing faults and other cyclostationary machine signals[J]. Mechanical Systems and Signal Processing, 2001, 15(5): 945-962.
  • 9Qiu H, Lee J, Lin J, et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J]. Journal of Sound and Vibration, 2006, 289(4-5): 1066-1090.
  • 10曾庆虎,邱静,刘冠军,张勇.基于小波相关滤波-包络分析的早期故障特征提取方法[J].仪器仪表学报,2008,29(4):729-733. 被引量:38

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部