期刊文献+

基于数组和辅助项头表的快速频繁项集挖掘算法 被引量:2

Fast frequent itemsets mining algorithms based on array and auxiliary item header tables
下载PDF
导出
摘要 目的:针对FP-growth算法项结点查询耗时,频繁项集挖掘需要不断产生条件FP-tree等问题,提出了一种基于数组和辅助项头表的快速频繁项集挖掘算法。方法:首先算法使用Array-structure代替FP-tree;然后使用具有两层可hash结构的辅助项头表取代频繁项集头表,并存储项结点在Array-structure上的位置信息,结合数组可被索引和hash结构特性快速定位项结点;最后利用辅助项头表上存储的项结点信息直接挖掘频繁项集,无需生成条件FP-tree。结果:与FP-growth等算法相比,该算法在不同类型的数据集上极大地缩短了算法的执行时间。结论:基于数组和辅助项头表的快速频繁项集挖掘算法在密集型和稀疏型数据集上都具有更好的挖掘性能和更高的执行效率。 Aims:This paper aims to solve the problems of time-consuming of FP-growth item nodes query and continuous mining generated by conditional FP-tree.A fast frequent itemsets mining algorithm based on array and auxiliary item header tables was proposed.Methods:Firstly,FP-tree was replaced with Array-structure.Then the auxiliary item header table with two layers of hash structure were used to replace the frequent item set header table, and the location information of the item node on the Array-structure was stored.Arrays with index and hash structure features were combined to quickly locate item nodes and improved item nodes query efficiency.Finally,the frequent itemsets were mined directly without generating the condition of FP-tree by using the information of item nodes stored on the auxiliary item header table.Results:The experimental results showed that compared with FP-growth and other algorithms,the algorithm greatly shortened the execution time on different data sets.Conclusions:The fast frequent itemsets mining algorithm based on array and auxiliary item header tables has better performance and higher execution efficiency on both dense and sparse data sets.
作者 杜媛 张世伟 DU Yuan;ZHANG Shiwei(College of Information Engineering,China Jiliang University,Hangzhou 310018,China;Modern Educational Technology Center,China Jiliang University,Hangzhou 310018,China)
出处 《中国计量大学学报》 2019年第1期78-84,共7页 Journal of China University of Metrology
关键词 计量学 关联规则 频繁项集 最小支持度 频繁模式增长 metrology association rules frequent itemsets minimum support frequent pattern growth
  • 相关文献

参考文献3

二级参考文献35

  • 1吉根林,杨明,宋余庆,孙志挥.最大频繁项目集的快速更新[J].计算机学报,2005,28(1):128-135. 被引量:47
  • 2秦亮曦,史忠植.SFPMax——基于排序FP树的最大频繁模式挖掘算法[J].计算机研究与发展,2005,42(2):217-223. 被引量:26
  • 3Han J W, Pei J, Yin Y W. Mining frequent patterns without candi- date generation[ C]. SIGMOD '00 Proceedings of the 2000 ACM SIGMOD International Conference on Management of data. New York: ACM New York,2000 : 1-12.
  • 4Grahne G ,Zhu J F. Efficiently using prefix-trees in mining frequent itemsets[ C]. Proceedings of the IEEE ICDM Workshop on Fre- quent Itemset Mining Implementations ( FIMI' 03 ), Melbourne, Florida, USA, 2003.
  • 5Goethals B, Zaki M J. Advances in frequent itemset mining imple- mentations :report on FIMI '03 [ C ]. Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI ' 03 ), Melbourne, Florida, USA ,2003.
  • 6Anekritmongkol S, Kasamsan M L K. The comparative of boolean algebra compress and apriori rule techniques for new theoretic asso- ciation rule mining model [ J]. Advanced Information Management and Service (IMS) ,2010:216-222.
  • 7Wang J ,Zeng Y. An efficient algorithm for mining closed weighted frequent pattern over data streams [ J ]. Software Engineering and Service Science ( ICSESS ) ,2012:153-156.
  • 8Mishra S, Mishra D, Sat,apathy S K. Particle swarm optimization bas ed fuzzy frequent pattern mining from gene expression data [ C ]. Computer and Communication Technology(ICCCT) ,2011 : 15-20.
  • 9Yin K C,Hsieh Y L,Yang D L. GLFMiner: global and local fre- quent pattern mining with temporal intervals [ C ]. Industrial Electronics and Applications (ICIEA) ,2010:2248- 2253.
  • 10Ahmed C F,Tanbeer S K,Byeong-Soo Jeong. An efficient method for incremental mining of share-frequent patterns[ C]. Web Conference( APWEB ) ,2010 : 147-153.

共引文献9

同被引文献18

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部