期刊文献+

自适应UKF算法在GNSS/INS深组合系统中的应用 被引量:7

Application of adaptive hybrid UKF algorithm in GNSS/INS deep integrated navigation system
下载PDF
导出
摘要 针对强非线性和时变噪声统计特性不明的高动态运动环境下全球卫星导航系统/惯导系统(GNSS/INS)深组合导航系统滤波精确度较差甚至发散的问题,提出一种自适应混合无迹卡尔曼滤波(UKF)算法。该算法以UKF算法为基础,采用混合滤波思想对UKF滤波算法进行简化;并根据高动态下系统量测噪声时变,且易快变、突变的特点,设计了一种基于渐消记忆指数加权的自适应量测噪声估计器,实时估计和修正噪声统计量并自适应调节估计周期。仿真结果表明,在量测噪声变化的情况下,相比于常规UKF算法,本文算法各向定位测速精确度均有所提升,水平方向精确度提升60%以上,效果明显;此外,算法耗时减少18.64%,说明本文算法能够在提升滤波精确度的同时减少部分计算量。 Aiming at the problem that the filtering accuracy is poor or even divergent in deep integrated Global Navigation Satellite System/Inertial Navigation System(GNSS/INS) in high dynamic motion environment with strong nonlinearity and inaccurate time-varying noise statistics, an adaptive hybrid filtering algorithm is proposed. In the proposed algorithm, the hybrid filtering idea is adopted to simplify the Unscented Kalman Filter (UKF) algorithm. According to the high dynamic system measurement noise time change, especially easy to change quickly and abrupt, an adaptive measurement noise estimator based on fading memory exponent is designed. It estimates and corrects the statistical characteristics in real time, and adaptively regulates the estimation cycle. The simulation results show that, in the case of variation of measurement noise, the accuracy of the algorithm is raised in comparison with the conventional UKF algorithm. The improvement effect of horizontal direction precision is obvious, which is more than 60%. In addition, the time consumption is reduced by 18.64% compared to the conventional UKF algorithm.
作者 王睿 黄清华 李世玲 WANG Rui;HUANG Qinghua;LI Shiling(Institute of Electronic Engineering,China Academy of Engineering Physics,Mianyang Sichuan 621999,China)
出处 《太赫兹科学与电子信息学报》 北大核心 2019年第2期221-226,共6页 Journal of Terahertz Science and Electronic Information Technology
基金 高动态惯性/卫星超紧组合导航技术研究基金(NSFA联合基金)资助项目(U13300133)
关键词 GNSS/INS 深组合 无迹卡尔曼滤波算法 量测噪声变化 噪声估计 deep integrated GNSS/INS Unscented Kalman Filter(UKF) measurement noise variation noise estimation
  • 相关文献

参考文献2

二级参考文献16

  • 1GORDON N J,SALMOND D J,SMITH A F M. Novel approach to nonlinear/non-gaussian Bayesian state estimation[C]. Minneapo.-Proc of the Radar and SignalProcessing, 1993.
  • 2GARY F, JASON S. GPS code tracking using a sampling importance resampling particle filter[C]. Honolulu: AIAA Guidance, Navigation and Control Conference and Exhibit,2008.
  • 3PAUL S. Genetic algorithm optimization of multilayer jaumann absorbers [R]. Canada: DRDC Atlantic TM, 2005.
  • 4Giovanni Giardini. Genetic algorithm for multi-agent space exploration[C]. California: AIAA 2007 Conference and Exhibit,2007.
  • 5BORNHOLDT S, GRAUDENZ D. General asymmetric neural networks and structure design by genetic algorithms[J]. IEEE Transactions on Neural Networks, 1992, 5(2) :327-334.
  • 6HIGUCHI T. Monte carlo filer using the genetic algorithm operators[J]. Journal of Statistical Computation and Simulation. 1997,59 (1) : 1-23.
  • 7臧荣春,崔平远,崔祜涛,金艺.基于IMM-UKF的组合导航算法[J].控制理论与应用,2007,24(4):634-638. 被引量:16
  • 8Tanizaki H. Nonlinear filters:Estimation and Application[M].New York,USA:SpringerVerlag,1996.
  • 9Oshman Y,Koifman M. Robust,IMM-based,tightly-coupled INS/GPS in the presence of spoofing[A].Providence,USA:AIAA,2004.1246363.
  • 10Jilkov V P,Li X R,Lei Lu. Performance enhancement of the IMM estimation by smoothing[A].MD,USA,2002.713-720.

共引文献4

同被引文献64

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部